Versuchsanleitungen
tzu den Modulen UF-DC III und UF-DC V.1

Übung

Konzeption von Experimenten
und ihr Einsatz

Ü4, alle LA-Studiengänge mit Chemie

Stand 29.03.2020
Legende:
B = Experimente-Konsens Bayern
D! = Experiment muss durchgeführt werden

Gliederung zum Experimentierkurs
Module FD-DC III.1 bzw. FD-DC V.1

0. Sicherheit / Termin: 21.04.2020 ... 6
 0.1 Einführung ... 6
 a) Literatur ... 6
 b) Sicherheitsbelehrung ... 6
 c) Sicherheit im Praktikum ... 7
 d) Entsorgung .. 7
 e) Sicherheit im Umgang mit elektrischen Geräten 7
 f) Handhabung der Versuchsleitungen 7
 g) Anforderungen .. 8
 h) Sicherheit bei Übungen mit Lernenden 8
 i) Ablauf des Praktikums .. 8
 j) Lehrziele ... 8
 k) Materialien ... 9
 0.2 Experimente zur Sicherheit .. 10
 a) Brennbare Gase: Flaschengest 10
 b) Wachsbrand: „Heiß und fettig“ 11
 c) „Erst das Wasser dann die Säure, ...“ 12
 0.3 Literaturliste ... 13
 0.4 Vorsichtsmaßnahmen ... 14
 0.5 Praktikums- und Laborordnung .. 15
 0.6 Materialkunde .. 16
 a) Glas .. 16
 b) Kunststoffe ... 16
 0.7 Labor-Gläser und Glas-Bearbeitung 16
 a) -Bearbeitung .. 17
 0.8 Heizquellen und Brenner ... 18
 0.9 Der Kartuschen-Brenner ... 19
 0.10 Kennzeichnung von Gas-Druckflaschen 20
 0.11 Handhabung von Gas-Druckflaschen 21
 0.12 Gefahrensymbole .. 22
 0.13 Legende .. 23
 0.14 Form: ... 24
 0.15 Sicherheit im Umgang mit elektrischem Strom 25
 0.16 Kompetenzen ... 27
 0.17 Laborgeräte ... 28
 0.18 Gefährdungsbeurteilung und Entsorgungsprotokoll 31

 1.1 Entw. Experiment: Feuerlöschmethoden 32
 1.2 Entw. Experiment: Baby-Windel 33
 1.3 Entw. Experiment: Brausepulver 34
 1.4 Entw. Experiment: Elektrische Energie 35
 1.5 Entw. Experiment: Mess-Methoden 36
 1.6 Entw. Experiment: Geisterhand 37

2. Stoffgemisch und Reinstoff / Termin: 05.05.2020 38
 2.1 Züchtung von Kristallen D! .. 38
 a) Deutsch ... 38
 b) Growing of crystals .. 40
 c) Bewertungsaufgabe .. 42
 2.2 Trennung einer Suspension von Sand und Wasser 43
 2.3 Modellversuch Trennung von Kunststoff-Abfällen D! 44
 2.4 Mischen von Flüssigkeiten (Modell-Vorstellungen) 45
 2.5 Destillation im kleinen Maßstab D! 46
 2.6 Wann erfolgt Mischung, wann Reaktion? D! 48
 2.7 Trennung durch Sublimation D! 50
 2.8 Trennungen an Brause-Pulver D! 51
 2.9 Stoffart- und Zustandsänderung B/D! 53
 2.10 Beispiele einfacher Experimente für den Einstieg in die Chemie in der ersten UE des Jahres D! 54
 2.11 Flüssiger Sauerstoff aus Luft D! 58

3. Stoffeigenschaften / Termin: 12.05.2020 59
 3.1 Ein Versuch als Methoden-Baustein: Dichte 59
 3.2 Bestimmung der Dichte unregelmäßiger Körper D! 61
 3.3 Bestimmung der Dichte regelmäßiger Körper 62
 3.4 Bestimmung der Dichte von Cola und Cola light 63
 3.5 Siedepunkt-Bestimmung von destilliertem Wasser und Kochsalz- Lösung .. 64
 3.6 Elektrische Leitfähigkeit ... 66
 3.7 Eigenschaften von Ionenverbindungen (Salzen) 67
 3.8 Iod-Schmelze ... 69
 3.9 Ein „Kaputtmach-Versuch“ D! 70
4. Die chemische Reaktion / Termin: 19.05.2020

4.1 Katalytische Zersetzung von Wasserstoffperoxid
4.2 Zersetzung von Wasserstoffperoxid
4.3 Lösung von Kaliumhydroxid in Wasser
4.4 Bildung von Eisensulfid (wird nicht durchgeführt)
4.5 Bildung von Zinksulfid B/D!
4.6 Eine endotherme Reaktion
4.7 Zersetzung v. Wasser, Löslichkeit v. Sauerstoff D!
 a) geschlossene Anleitung
 b) Montessori-Variante
 c) offene Variante D!
4.8 Synthese von Wasser B/D!
4.9 Erhitzen von Kupfer im Verbrennungsröhren
4.10 Kohlenstoffdioxid und Wasser D!
4.12 Wasser als Lösemittel D!

5. Verbrennung / Termin: 26.05.2020

5.1 Brennende Kerze im abgeschlossenen Luft-Raum
5.2 Brennbare Flüssigkeiten aus dem Haushalt
5.3 Luft-Analyse I: Verbrennung von rotem Phosphor (wird nicht durchgeführt)
5.4 Reduktion von Kupfer(II)-oxid mit Wasserstoff D!
5.5 Luft-Analyse III: Oxidation von Eisen D!
5.6 Feuer lösen I
5.7 Feuer löschen II D!
5.8 Kohlenstoffdioxid als Verbrennungsprodukt D!
5.9 Wasser als Verbrennungsprodukt D!
5.10 Brennbarkeit fein verteilter Metalle
5.11 Atmung als Verbrennungsvorgang D!
5.12 Verbrennung in reinem Sauerstoff
5.13 Verbrennen von Eisen-Wolle D!
5.14 Brennbare Sprüh-Nebel
5.15 Analyse von Luft IV: Oxidation von Eisen

6. Redox-Reaktionen / Termin: 09.06.2020

6.1 Knallgas-Reaktion

6.2 Kaliumnitrat als Oxidationsmittel D!
6.3 Thermit-Versuch selbstbau B/D!
6.4 Thermit-Demonstrationskasten (Hedinger) B/D!
6.5 Verbrennung in Wasserstoff-Atmosphäre
6.6 Reaktion von Kohlenstoffdioxid mit Magnesium
6.7 Reaktion von Aluminium mit Brom B/D!
6.8 Rosten
6.9 Mehlauf-Explosion B/D!
6.10 Pyrophores Eisen
6.11 Elektrochemische Korrosion B/D!
6.12 Herstellung von Sicherheitszündhölzern D!
6.13 Licht-Induzierte Redox-Reaktion
6.14 Benzin-Explosion
6.15 Knalldose

7. Chemische Bindung / Termin: 16.06.2020

7.1 Züchten von Kristallen (deutsch) D!
7.2 Growing of crystals (englisch)
7.3 Leitfähigkeit von Lösungen B/D!
7.4 Ionen-Wanderung B/D!
7.5 Leitfähigkeit von Salz-Schmelzen
7.6 Leitfähigkeit von Metallen
7.7 Nachweis der Polarität von Lösungsmitteln B/D!
7.8 Gebundenes Wasser B/D!
7.9 Herstellung eines Leitfähigkeitsprüfers

8. Säuren und Basen / Termin: 23.06.2020

8.1 Indikatoren
8.2 Hygroskopische Wirkung von Schwefelsäure
8.3 Darstellung von Gasen
8.4 Springbrunnen-Versuch B/D!
8.5 Säure-Base-Springbrunnen im kleinen Maßstab
8.6 Verdünnten konzentrierter Säuren
8.7 pH-Wert von Säuren B/D!
8.8 Die Einwirkung von Säuren auf Basen
8.9 Zauber-Wasser
8.10 pH-Werte von Alltagsprodukten D!
8.11 Säuren essen D! ... 160
8.12 Salze essen ... 162
8.13 Halbautomatische Titration von Salzsäure mit Natronlauge 164

9. Alkalimetalle und Halogene / Termin: 30.06.2020 166
9.1 Alkalimetalle und Wasser D! ... 166

10. Wasser / Termin: 30.06.2020 ... 168
10.1 Temporäre Wasserhärte .. 168
10.2 Permanente Wasserhärte ... 169
10.3 Bestimmung der Gesamthärte mit Titriplex D! 170

11. Elektrochemie / Termin: 30.06.2020 171
11.1 Lösungstensionsreihe ... 171
11.2 Die Spannungsreihe der Metalle 172
11.3 Das Daniell-Element B/D! ... 173
11.4 Elektrolyse von Zinkiodid B/D! 174
11.5 Elektrolyse von Zinnchlorid .. 176
11.6 „Vergolden“ einer Kupfer-Münze B/D! 177

12.1 Destillation von zwei mischbaren Flüssigkeiten D! 178
12.2 Darstellung von Methan oder Ethin D! 180
12.3 Nachweis von Ethanol .. 182
12.4 Nachweisreaktionen fkt. Gruppen org. Moleküle 183
12.5 Darstellung und Nachweis von Alkanolen 186
12.6 Weitere Nachweise für Alkanale 187
12.7 Bestimmung der Siedetemperatur von Alkanolen 188
12.8 Darstellung von Frucht-Estern D! 190
12.9 Nylon-Herstellung (wird nicht durchgeführt) 192
12.10 Perlon-Herstellung B/D! ... 194
12.11 Untersuchung von Kunststoffen D! 196
12.12 Herstellung von Seife B/D! .. 198
12.13 Untersuchungen an einer PET-Flasche 200

13. Lebensmittel / Termin: 07.06.2020 201
13.1 Trüffel ... 201
13.2 Eis-Konfekt .. 202

14.1 Nachweis des Ammonium-Kations 203
14.2 Aluminium-Salze in Deodorants 204
14.3 Maillard-Verbindungen ... 205
14.4 Absorptionsspektrum eines Indikers 206
 a) Merck .. 206
 b) Vernier ... 207

15.1 Modell: Einführung der Wertigkeit mit LEGO-Steinen 209
15.2 Chemische Reaktion (LEGO) mündlich, Betreuer 210
15.3 Atome nach Kimball, nach Anweisung der Betreuer 210
15.4 Modell-Versuch zum chemischen Gleichgewicht B/D! 210
15.5 Das Chemische Gleichgewicht B/D! 212
 a) geschlossen .. 212
 b) geöffnet, problemorientiert 213
15.6 Modell-Versuch zum Energie-Profil B/D! 214
15.7 Das Gummibären-System .. 216
15.8 Große Teilchen, kleine Teilchen, überhaupt Teilchen? 217
15.9 Das Sieden B/D! .. 219

16. Anhang zum Nachschlagen ... 222
16.1 Entsorgung .. 223
16.2 Entsorgungsratschläge (E-Sätze) 224
16.3 Vorschriften rund ums Feuerwerk 225
16.4 Gerätschaften am Arbeitsplatz 227
16.5 Herstellen von Lösungen .. 229
<table>
<thead>
<tr>
<th>Übungsexperimente für Demonstrationstechniken</th>
<th>Teilnehmer</th>
</tr>
</thead>
<tbody>
<tr>
<td>01. 2.9 Stoffart- und Zustandsänderung</td>
<td></td>
</tr>
<tr>
<td>02. 3.2 Bestimmung der Dichte unregelmäßiger Körper</td>
<td></td>
</tr>
<tr>
<td>03. 3.9 Ein „Kaputtmach-Versuch“</td>
<td></td>
</tr>
<tr>
<td>04. 4.7 / 4.7a) Zersetzung v. Wasser, Löslichkeit v. Sauerstoff</td>
<td></td>
</tr>
<tr>
<td>05. 4.11 Kohlenstoffdioxid und Wasser</td>
<td></td>
</tr>
<tr>
<td>06. 5.7 Feuer löschen II</td>
<td></td>
</tr>
<tr>
<td>07. 5.11 Atmung als Verbrennungsvorgang</td>
<td></td>
</tr>
<tr>
<td>08. 5.13 Verbrennen von Eisen-Wolle</td>
<td></td>
</tr>
<tr>
<td>09. 6.9 Mehlstaub-Explosion</td>
<td></td>
</tr>
<tr>
<td>10. 6.10 Pyrophores Eisen</td>
<td></td>
</tr>
<tr>
<td>11. 6.13 Licht-Induzierte Redox-Reaktion</td>
<td></td>
</tr>
<tr>
<td>12. 7.3 Leitfähigkeit von Lösungen B/D!</td>
<td></td>
</tr>
<tr>
<td>13. 7.8 Gebundenes Wasser B/D!</td>
<td></td>
</tr>
<tr>
<td>14. 8.3 Darstellung von Gasen (Fehler! Kein gültiges Resultat für Tabelle.) und 8.4 Springbrunnen-Versuch (Spritzentechnik)</td>
<td></td>
</tr>
<tr>
<td>15. 8.7 pH-Wert von Säuren</td>
<td></td>
</tr>
<tr>
<td>16. 10.3 Bestimmung der Gesamthärt mit Titriplex</td>
<td></td>
</tr>
<tr>
<td>17. 11.3 Das Daniell-Element</td>
<td></td>
</tr>
<tr>
<td>18. 11.4 Elektrolyse von Zinkiodid</td>
<td></td>
</tr>
<tr>
<td>19. 11.6 „Vergolden“ einer Kupfer-Münze</td>
<td></td>
</tr>
<tr>
<td>20. 12.2 Darstellung von Methan oder Ethin (konv. Aufbau)</td>
<td></td>
</tr>
<tr>
<td>21. 12.11 Untersuchung von Kunststoffen</td>
<td></td>
</tr>
<tr>
<td>22. 15.5a Das Chemische Gleichgewicht</td>
<td></td>
</tr>
<tr>
<td>23. 15.6 Modell-Versuch zum Energie-Profil</td>
<td></td>
</tr>
<tr>
<td>24. 12.13 Untersuchungen an einer PET-Flasche</td>
<td></td>
</tr>
</tbody>
</table>
0. Sicherheit / Termin: 21.04.2020

0.1 Einführung

Material:
- Häusler, K; Rampf, H.; Reichelt, R.: Experimente für den Chemieunterricht; Oldenbourg-Verlag, München 1991
- Handbuch der experimentellen Chemie; Aulis-Verlag, m. J.
- Arendt/Dörmer
- DGUV-Regel 113-018 „Unterricht in Schulen mit gefährlichen Stoffen
- Stoffliste zur DGUV-Regel 113-018

Ziel der Übungen ist es, Ihnen zu vermitteln:
- Grundfertigkeiten für das Experimentieren
- Anregungen zur Gestaltung und Auswahl von Versuchen für die Unterrichtspraxis sowie
die sichere Handhabung von Versuchsanordnungen und Chemikalien

a) Literatur

Besonderheiten:
- S. 6 – 25: Umgang mit Geräten
Weitere Literatur entnehmen Sie bitte der Literaturliste.

b) Sicherheitsbelehrung

Grundlage für alle Sicherheitsbestimmungen im Umgang mit Gefahrstoffen ist die
- Gefahrstoffverordnung GefStoffV der Bundesanstalt für Arbeitsschutz und Arbeitsmedizin; Ausgabe 2010; eine sehr hilfreiche Darstellung in Übersicht findet sich bei Wikipedia.
- Sicheres Arbeiten in Laboratorien BGI 850-0; von der Deutschen Gesetzlichen Unfallversicherung
- GHS; Global Harmonisiertes System zur Einstufung und Kennzeichnung von Gefahrstoffen (Kurzbeschreibung in Wikipedia)
- DGUV-Regel 113-018 Unterricht in Schulen mit gefährlichen Stoffen der Gesetzlichen Unfall Versicherung (GUV); München 2010

Vorsichtsmaßnahmen im chemischen Experimentalunterricht
c) **Sicherheit im Praktikum**

Einrichtungen
- Fluchtweg aus dem aktuellen Labor
- Sammelpunkt kennen, hier: Infopunkt 7 vor NW2
- Feuermelder: neben Fluchttür auf der Gangseite
- Verbandskasten
- Notaus für Gas und Strom
- Augendusche(n)
- Löschsand
- Zugangssicherung (Fluchttür)
- 2. Fluchttür
- Sicherheitsschränke für Gefahrstoffe
- Giftschrank
- Kühl schrank, explosionsgeschützt
- Feuerlöscher
- 2kg \(\text{CO}_2 \) (B) neben Abzug
- 5kg \(\text{CO}_2 \) (B) im Gang
- 6kg Pulver (ABC) in der Halle
- Notdusche
- Löschdecke
- Hierarchie der Gas-Absperrungen
- Sicherheitsschränke für Druckgase

Praktikums- und Laborordnung, Kurzfassung

d) **Entsorgung**

Für die Entsorgung von Chemikalien stehen Behälter mit folgender Kennzeichnung zur Verfügung:
- **B1** saure und basische Abfälle (flüssig, gelöst
 Schwermetall-Salzlösungen
- **B2** umweltgefährdende feste und schlammige Abfälle
- **B3** Organische Abfälle (flüssig, halogenhaltig)

Alle anderen Fälle müssen speziell vorbehandelt werden, bevor sie ggf. über obige Wege entsorgt werden, z. B.:
- Carbide: mit Wasser abreagieren lassen, dann in **B1**
- Alkalimetalle: mit Ethanol (Kalium mit Butan-2-ol) umsetzen, dann **B1**
- Brom, Chlor und ihre Lösungen in Wasser: mit Natriumthiosulfat reduzieren, dann in den Ausguss
- Aminen: mit verdünnter Salzsäure neutralisieren, dann **B3**

Eine vollständigere Auflistung findet sich im Anhang zum Kursskript.

e) **Sicherheit im Umgang mit elektrischen Geräten**

Demonstration 1:
Sicherer und unsicherer „Strom“

Material:
- elektronisches Netzteil
- 2 Kabel mit Bananenstecker
- 2 Kupfer-Elektroden
- 9V-Blockbatterie
- 4,5V-Flachbatterie
- 1,5V-Mignonzelle

Durchführung 1:
(gefährliche Spannungen) Dozent

Durchführung 2:
Kurzschluss provozieren

f) **Handhabung der Versuchsanleitungen**

1) Lesen Sie Anleitung und Legende dazu.
2) Suchen Sie sich aus einem Kapitel die 3 – 5 Ihrer Meinung nach interessantesten Versuche heraus.
3) Führen Sie diese Versuche durch, bis sie einwandfrei funktionieren. Es ist wichtiger, einen Versuch wirklich zu beherrschen als zwanzig „heruntergekocht“ zu haben.
4) Beachten Sie die exakte Bezeichnung der Arbeitsgeräte.
5) Sollte noch Zeit übrig sein, nehmen Sie sich die anderen Versuche des Kapitels vor.
7) Machen Sie sich mit der Handhabung von Geräten (z. B. Gas-Druckflaschen) und Kennzeichnungsrichtlinien (Gefahrensymbole, Farbcodierung bei Gas-Druckflaschen) vertraut.

Merkblatt: Materialliste, (siehe Anhang im Skript)

g) Anforderungen
- Regelmäßige Anwesenheit
- Demonstration eines Experimentes für alle Teilnehmer des Kurses
- Abschluss-Kollog etwa in der Form: Welche Experimente kenn Sie zur Einführung der Reduktion?
- Beschreiben Sie ein Beispiel genau.
- Skizzieren Sie den Versuchsaufbau grob.
- Welche Sicherheitsmaßnahmen müssen Sie ergreifen?
- Wie Entsorgen Sie die entstehenden Abfälle?
- Ist der Versuch als Schülerübung geeignet?

h) Sicherheit bei Übungen mit Lernenden

Besonders zu beachten (beispielhafte Kurzform; vollständige Hinweise in der DGUV-Regel):
- „Sehr giftige“ Stoffe müssen, sofern die Bevorratung überhaupt zugelassen ist, in einem „Giftschrank“ abgeschlossen aufbewahrt werden. Beispiele: Ammoniumdichromat, Antimon(III)-oxid, Arsen und seine Verbindungen…
- Giftige, krebserzeugende, Fruchtschädigende, Erbgutverändernde und explosionsgefährliche Stoffe dürfen für Versuche mit Lernenden nicht verwendet werden.
- Quecksilber-Thermometer sind bei Übungen mit Lernenden durch Alkohol-Thermometer zu ersetzen.
- Bis einschließlich Jahrgangsstufe 10 dürfen Lernende nur mit Wechsel-Spannungen bis 24V experimentieren.
- Lernende dürfen Fachräume ohne Aufsicht durch den Fachlehrer nicht betreten.
- Lernende müssen ausdrücklich darauf hingewiesen werden, dass gefährliche Experimente nicht zu Hause nachvollzogen werden dürfen.

i) Ablauf des Praktikums
1) Anleitung wird ausgeteilt
2) Vorbesprechung mit Hinweisen zur Durchführung, Besonderheiten, Organisatorisches (paralleler/serieller Versuch, Demonstration…)
3) Durchführung
4) Nachbesprechung mit Diskussion (Ergebnisse, fachliches Umfeld, Varianten, Schwierigkeiten bei der Präsentation bzw. im Verständnis Lernender…)

j) Lehrziele
- Erzielung des Versuchsergebnisses
- Sichere Durchführung von Experimenten
- Vorführen von Experimenten
- Einbettungspotential in den Unterricht
- Experimente entwerfen
- Experimente öffnen
k) **Materialien**

- http://www.guvv-bayern.de/Internet_I-Frame/Files/PDF/GBI/NatWissU_Chemie_Info_Schule_04062007.pdf
 Aufstellung von Sicherheitsrichtlinien und Maßnahmen für Fachräume in Schulen.

- http://www.sichere-schule.de/
 Sehr schön gestaltete, anschauliche Darstellung von Sicherheitsbestimmungen u.a. für das Fach Chemie im Schulhaus.
0.2 Experimente zur Sicherheit

a) Brennbare Gase: Flaschengeist

Zeitbedarf: ca. 3 Minuten

Kompetenz/Ziel:
F = Gefährlichkeit brennbare Gase, B = Sicherheit im Umgang mit Chemikalien

Material:
- Rundkolben 1000mL
- Korkring
- Passender Stopfen
- Streichhölzer
- Plastik-Pasteurpipette
- Becherglas breite Form10mL

Chemikalien:
- Spiritus (Ethanol)
 CAS-Nr.: 64-17-5
 Gefahr:
 H225, H319
 P210, P240, P305+P351+P338, P403+P233

Vorbereitung:
Den Kolben vor Verwendung auf Risse oder andere Schadstellen im Glas überprüfen! Nur einwandfreie Kolben verwenden, da sonst die Gefahr des Platzens besteht.

Durchführung 1:

Beobachtung 1:
Das Ethanol-Luft-Gemisch entzündet sich und brennt mit blauer Flamme. Durch die Inflagration entsteht ein mehr oder weniger lautes „heulendes“ Geräusch.

Deutung 1:

Diskussion:
Der Versuch kann auch in einem großen Wasserspender-Gefäß aus Plastik (!) durchgeführt werden. Dieser sollte am Boden stehen, da die Stichflamme sehr hoch wird.

Entsorgung:
Spiritus im Ausguss.

Quelle:
Unterricht Chemie 17 (2006) Nr. 96
b) Wachsbrand: „Heiß und fettig!“

Zeitbedarf: ca. 5-8 Minuten

Kompetenz/Ziel:
F = Brennbarkeit von Alkanen, B = Sicherheit im Umgang mit Chemikalien

Material:
- Reagenzglas 16mm
- Becherglas breite Form 800mL
- Stativ mit Muffe und Klemme
- Gasbrenner
- Feuerzeug
- Messer und Schneidbrett

Chemikalien:
- Leitungswasser
- Kerzenwachs (gute Qualität)
- Alufolie

Vorbereitung:
Kleine Stücke vom Kerzenwachs abschneiden und das Reagenzglas ca. 2cm hoch damit befüllen. (= ca. 1/3 Teelichts (keine Billigware verwenden, funktioniert meist nicht).
Das Becherglas bis ca. 3cm unter den Rand mit Wasser füllen.
Das Pult (Feuerfeste Unterlage), auf dem der Versuch vorgeführt wird, großflächig mit Alufolie auslegen, bei dem Versuch spritzt Wachs.

Durchführung 1:
Das mit den Wachsstückchen gefüllte Reagenzglas schräg (etwas steiler als 45°) im Stativmaterial einspannen und an das Ende des präparierten Tisches stellen, an dem der Gasbrenner aufgebaut ist. Die Öffnung des Reagenzglases zeigt in Richtung der feuerfesten Unterlage!
Das wassergefüllte Becherglas griffbereit neben das Stativ stellen.
Das Wachs im Reagenzglas mit dem Gasbrenner so lange erhitzen, bis die Wachsschmelze sich beim Sieden gelblich färbt und weiße Dämpfe entstehen.
Gaszufuhr schnell abdrehen und Gasbrenner abschalten.
Das Becherglas mit ausgestrecktem Arm zügig unter das Reagenzglas bringen, so dass dieses ins Wasser taucht.

Beobachtung 1:
Die Kerzenwachsdämpfe werden aus dem Reagenzglas herausgeschleudert und entzünden sich an der Luft.

Deutung 1:
Durch das rasche Abkühlen des gasförmigen Wachses wird so viel Gitterenergie frei, dass ein Teil der Wachsschmelze als sehr feine Wachsdämpfe entstehen, die sich an Luft entzünden.

Diskussion:

Entsorgung:
Wachsreste und Reagenzglas in den Hausmüll. Alufolie wiederverwenden.

Quelle:
Unterricht Chemie, Heft 17 (2006) Nr. 96, Seite 26
c) „Erst das Wasser dann die Säure, ..:“

Zeitbedarf: ca. 3 Minuten

Kompetenz/Ziel:
F = Herstellen saurer und basischer Lösungen, B = Sicherheit im Umgang mit Chemikalien

Material:
- Becherglas hohe Form 800mL
- 2 Messzylinder 50mL
- Abdeckung für Becherglas (Uhrglas, Glasplatte)
- Becherglas 150mL breite Form
- Thermometer 200°C oder digital

Chemikalien:
- Schwefelsäure konz.
 CAS-Nr.: 7664-93-9
 Gefahr
 H314, H290
 P280.1–4+7, 301+330+331, 303+361+353, 305+351+338, 309+310
- Leitungswasser
- Kunststofftrinkbecher als Polystyrol (PS)
- pH-Papier
- Natronlauge (Natriumhydroxid-Lösung)
c= 1mol/L
 CAS-Nr.: 1310-73-2
 Gefahr
 H314, 290
 P280.1–4, 301+330+331, 303+361+353, 305+351+338, 309+310

Vorbereitung:
Jeweils 50mL Schwefelsäure konz. und Leitungswasser in den Messzylindern abfüllen.

Durchführung 1:
Der Kunststofftrinkbecher aus Polystyrol wird in ein geräumiges Becherglas gestellt und zuerst mit 50mL Schwefelsäure konz. befüllt. Dann wird das Wasser aus dem zweiten Messzylinder in einem Guss ebenfalls in den Becher gegossen. Das Becherglas sofort mit einer Abdeckung verschließen.

Beobachtung 1:
Der Trinkbecher „schmilzt“ im Becherglas und zieht sich zu einer kleinen runden Scheibe zusammen (ursprüngliche Form vor dem Formen des Rohlings).
Mit einem Thermometer kann man die freiwerdende Reaktionsenergie messen (bis zu 180°C).

Deutung 1:

Diskussion:
„Erst das Wasser, dann die Säure, sonst geschieht das ungeheure!“ Beim Herstellen von sauren oder basischen Lösungen wird immer zuerst das Wasser vorgelegt und dann die Säure oder Base bzw. Lauge zugegeben. NIE die Säure / Base mit dem Wasser verdünnen. Das zugetropfte Wasser kann sich sonst so stark erhitzten, dass es als Wasserdampf aus dem Gefäß herausfliesst und dabei kleine Mengen an Säure / Base mitreißt, die dann Verätzungen oder andere Schäden hervorrufen können.

Entsorgung:

Quelle:
Unterricht Chemie, Heft 17 (2006) Nr. 96, Seite 27
0.3 Literaturliste

Alle sind in der Bibliothek der Universität Bayreuth vorhanden.

Experimente Sammlungen:
- Experimentelle Schulchemie, Studienausgabe in 9 Bänden, Franz Bukatsch, Wolfgang Glöckner; AULIS-Verlag Köln 1969; ca. 118€
- Chemische Schulversuche Stäpf, Helmut et al; HARRY DEUTSCH, Frankfurt 1975; vergriffen
- Chemische Schulexperimente, eine Anleitung für Lehrer, 5 Bände HARRI DEUTSCH, Frankfurt 1979-88
- Chemische Grundversuche für Lehrer in der Hauptschule Karl Häusler; Prögel Praxis Band 117; OLDENBOURG, Prögel, München 1985 vergriffen
- Experimente für den Chemieunterricht: Mit einer Einführung in die Labortechnik Karl Häusler, Heribert Rampf, Roland Reichelt; 2. Auflage; OLDENBOURG, München 2002; 34,90€, lieferbar
- Handbuch der experimentellen Chemie Sekundarbereich II, 12 Bände Wolfgang Glöckner, Walter Jansen, Rudolf G. Weißenhorn; AULIS DEUBNER, Köln 1996; ca. 500€, 8 Bände schon erschienen
- Chemische Schulexperimente, in 3 Bänden Hans Keune, Helmut Boeck u. a.; VOLK UND WISSEN, Berlin 1998 59,80€, 2 Bände erschienen

Zeitschriften:
- Praxis der Naturwissenschaften – Chemie in der Schule Aulis-Verlag, Köln; 8 Hefte/Jahr, ca. 60€, es gibt Studentenrabatt Angemessene Tiefe der Fachinformation, jedoch viele Spezialthemen am Rande des Unterrichts.
0.4 Vorsichtsmaßnahmen

- **Halten Sie Ordnung an dem Arbeitsplatz.** Geräte und Chemikalien, die nicht mehr benötigt werden, stören beim Experimentieren und erschweren die Beobachtung.
- Chemikalien sind mit Löffel und Spatel herauszunehmen. Reste nicht in die Flasche zurück.
- Flaschen sofort wieder schließen. Stopfen dürfen nicht verwechselt werden.
- Beim Erhitzen Reagenzglas-Mündung nicht auf Personen richten. Siedeverzug durch Schütteln oder Siedesteine vermeiden. **Bei alkalischen Flüssigkeiten ist besondere Vorsicht geboten.**
- Beim Umfüllen flüchtiger brennbarer Flüssigkeiten müssen alle Flammen gelöscht bzw. auf Sparflamme gestellt sein.
- Bei Explosionsversuchen einen Sicherheitsabstand von 3m einhalten. Splitterschutzwand, evtl. Splitterschutzkorb verwenden.
- Konzentrierte Säuren oder Laugen beim Verdünnen immer in Wasser gießen, nicht umgekehrt. Schutzbrille tragen. **Nicht von Lernenden durchführen lassen.**
- Bei Explosionsversuchen einen Sicherheitsabstand von 3m einhalten. Splitterschutzwand, evtl. Splitterschutzkorb verwenden.
- **Die Herstellung von explosionsgefährlichen Stoffen oder das Experimentieren mit radioaktiven Präparaten ist unzulässig.**
- Gas Abzug rechtzeitig benutzen und Ventilator einschalten, wenn giftige oder gesundheitsschädliche Gase, Dämpfe, Nebel oder Rauch auftreten.
- Beim ausgießen aus Flaschen soll das Etikett oben sein. Herabrinnende Tropfen mit Stopfen abstreifen.
- Keine Chemikalien ohne Behälter oder Filterpapier auf die Waagschale legen.
- Brenner nicht knapp an die Tischkante stellen.
- Gashähne (einschl. Haupthahn) am Ende des Unterrichts bzw. der Vorbereitung schließen.

- Gesäuberte Reagenzgläser zum Abtropfen in das Reagenzglas-Gestell umgekehrt einstellen.
- Geräte, Löffel, Spatel, Pinzetten und dgl. nach Gebrauch wieder dorthin, wo sie entnommen wurden.
- Es darf nur festes, geschlossenes und trittsicheres Schuhwerk getragen werden.
- Pipettieren mit dem Mund verboten. Kolbenhubpipetten oder Peleus-Ball verwenden.
- Mängel an Geräten müssen durch Lernende unverzüglich gemeldet und vom Lehrenden baldmöglichst abgestellt werden.
- In Laboratorien, in denen Tätigkeiten mit Gefahrstoffen durchgeführt werden, dürfen Nahrungs- und Genussmittel nicht hintereinandergebracht sowie Kosmetika nicht angewendet werden.
- Für Chemikalien dürfen keine Gefäße benutzt werden, die üblicherweise zur Aufnahme von Speisen oder Getränken bestimmt sind. Speisen und Getränke dürfen nicht zusammen mit Chemikalien aufbewahrt werden.
- An Gas-Brennern sind absperrbare Einstellgeräte für das Brenngas nicht zulässig.
0.5 Praktikums- und Laborordnung

Kurzform zum Merken:

Gefahrstoffe sind Stoffe oder Zubereitungen, die

- explosiv (GHS01)
- entzündlich (GHS02)
- oxidierend (GHS03)
- komprimierte Gase (GHS04)
- ätzend (GHS05)
- giftig (GHS06)
- sensibilisierend (GHS07)
- krebserzeugend (GHS08)
- gewässergefährdend (GHS09)

sind oder aus denen bei der Verwendung gefährliche oder explosionsfähige Stoffe oder Zubereitungen entstehen oder freigesetzt werden können.

- Gefahrstoffe dürfen nicht in Behältnissen aufbewahrt oder gelagert werden, die zu Verwechslungen mit Lebensmitteln führen können.
- Sämtliche Standgefäße, auch die für Lösemittel-Abfälle, sind mit dem Namen des Stoffes und den Gefahrensymbolen zu kennzeichnen, große Gefäße sind vollständig zu kennzeichnen, d. h. auch mit H- und P-Sätzen.
- Im Labor muss ständig eine Schutzbrille getragen werden; Brillenträger müssen eine optisch korrigierte Schutzbrille oder eine Überbrille nach W DIN 2 über der eigenen Brille tragen.
- Das Essen, Trinken und Rauchen im Lavor sind untersagt.
- Die Hinweise des Praktikumsleiters zur Sicherheit bei besonderen Versuchen sind unbedingt zu beachten.
- Alle Teilnehmer an den Praktika müssen an der Sicherheitsbelehrung teilnehmen.
- Man hat sich über den Standort und die Funktionsweise der Notabsperr-Vorrichtungen für Gas und Strom sowie der Wasserversorgung zu informieren. Nach Eingriffen in die Gas-, Strom- und Wasserversorgung ist unverzüglich die Zentrale Technik, Tel.: 2117, zu informieren. Eingriffe sind auf Notfälle zu beschränken und die betroffenen Verbraucher zu warnen.
- Bei allen Hilfeleistungen auf die eigene Sicherheit achten. So schnell wie möglich einen notwendigen Notruf tätigen.

intern: 2117 (Rufbereitschaft der Zentralen Technik)
extern 9112 (Feuerwehr)
0.6 Materialkunde

Material: Polystyrol (PS), Polyethylen (PE), Polyamid (PA), Teflon (PTFE) → Beispiele für Gefäße; verschiedene Glassorten (Duran, Argon, Kalk-Soda)

Ziel der Einheit ist es, Ihnen zu vermitteln:
- welche Glassorten vorkommen und was sie unterscheidet, sowie
- welche Ersatz-Materialien verwendbar sind.

a) Glas

Für viele Anwendungen müssen z. B. nicht Bechergläser verwendet werden, ein Marmeladen-Glas tut’s auch, sofern es nicht erhitzt werden muss.

Übung zur Glas-Bearbeitung

b) Kunststoffe

- **PE = Polyethylen, PP = Polypropylen, „die besseren, großen Joghurt-Becher“, auch für kochendes Wasser und (warmer) Fett.
- **PA = Polyamid, Spezialanwendungen: beständig gegen Benzin u. ä.

0.7 Labor-Gläser und Glas-Bearbeitung

- „Normal-Glas“ = Jenaer Geräte-Glas 20, preislich günstig, weitgehend gegen Chemikalien beständig, gute Temperatur-Eigenschaften.
- **Duran-Glas 50**, etwas teurer, aber geringer Ausdehnungskoeffizient, d. h. für größere Temperatur-Unterschiede (heißes Reagenzglas auf die kalte Tischplatte legen…)
- **Quarz-Glas**, sehr teuer, aber für sehr hohe Temperaturen (1000°C, Verbrennungsrohre) oder sehr starke Temperatur-Schwankungen (heißes Glas in Wasser).

Für viele Anwendungen müssen nicht Bechergläser verwendet werden: ein Marmeladen-Glas tut’s auch, sofern es nicht erhitzt werden muss.
a) -Bearbeitung

Ziel: Glas-Bearbeitung, Material-Kunde

Material:
- Glas-Säge, Dreikant-Feile oder Glas-Schneider
- Brenner, Feuerzeug
- 2 Glas-Rohre, L = 50 cm, d = 7 mm

Durchführung 1 (schneiden):

Durchführung 2 (abrunden):

Durchführung 3 (Pipette):
Eine der Hälften an beiden Enden anfassen und ca. 5-7 cm vom neuen Ende entfernt in die rauschende Brenner-Flamme halten. Unter ständigem Drehen bis zum Erweichen erhitzen. Etwas stauchen, dann aus der Flamme nehmen und vorsichtig auseinanderziehen, bis die Spitze die gewünschte Dicke hat. Erst erkalten lassen, dann wie in D1 abschneiden. Neue Spitze ggf. wie in D2 abrunden, geht jetzt aber schnell.

Durchführung 3 (biegen):

Diskussion:
Ausrichten eines U-Rohrs, einfaches Justieren eines 90°-Winkels (Papier).
0.8 Heizquellen und Brenner

Material:
- Teclu-Brenner
- Bunsen-Brenner

Experimente zur Funktionsweise. Weitere Heiz-Quellen, Demonstrationen:
- Teelicht
- Campinggas-Kocher
- Magnetrührer, heizbar
- Streichhölzer
- Kerze
- Spiritus-Brenner
- Tauchsieder
- Esbit-Kocher
0.9 Der Kartuschen-Brenner

Beispiel einer Betriebsanweisung

Inbetriebnahme

- Brenner-Kopf (7) und Hahn-Körper (2) fest miteinander verbinden.
- Hahn-Körper von der Stahlblech-Haube (4) lösen.
- Kartusche (3) in die Haube einsetzen.
- Bügel (5) herunterklappen und die Kartusche festklemmen.
- Hahn-Körper auf die Stahlblech-Haube schrauben. Dadurch wird die Kartusche durch den Bolzen (9) aufgebohrt. Dabei muss der Regler-Knopf (1) zu sein.
- Regler-Knopf (nach links) aufdrehen.
- Entströmendes Gas anzünden.
- Flammen-Höhe mit dem Regler-Knopf (1) einstellen.
- Luft-Zufuhr mit dem Rändel-Ring (6) regulieren.

Vorsichtsmaßnahmen

- Butan-Gasbrenner nur senkrecht stehend verwenden (flüssiges Butangas läuft aus!).
- Bei betriebsfertig montiertem Brenner darf der Hahn-Körper nicht abgeschraubt werden, da sonst das Gas der aufgebohrten Kartusche ausströmt.
- Das Auswechseln der Kartusche darf nur vom Lehrenden und nur in gut gelüfteten Räumen ohne offene Flammen erfolgen: sie kann noch Gas-Reste enthalten.
0.10 Kennzeichnung von Gas-Druckflaschen

<table>
<thead>
<tr>
<th>Gas-Art</th>
<th>Flaschen-Farbe*</th>
<th>Bemerkung</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Schulter</td>
<td>Zylinder</td>
</tr>
<tr>
<td>Acetylen = Ethin (C₂H₂)</td>
<td>kastanien-braun</td>
<td>grau</td>
</tr>
<tr>
<td>Stickstoff (N₂)</td>
<td>schwarz</td>
<td>grau</td>
</tr>
<tr>
<td>Ammoniak (NH₃)</td>
<td>gelb</td>
<td>grau</td>
</tr>
<tr>
<td>Argon (Ar)</td>
<td>dunkelgrün</td>
<td>grau</td>
</tr>
<tr>
<td>Chlor (Cl₂)</td>
<td>gelb</td>
<td>grau</td>
</tr>
<tr>
<td>Ethylen = Ethen (C₂H₄)</td>
<td>rot</td>
<td>grau</td>
</tr>
<tr>
<td>Neon (Ne), Xenon (Xe), Krypton (Kr), Druckluft</td>
<td>leuchtendgrün</td>
<td>grau</td>
</tr>
<tr>
<td>Kohlenstoffdioxid CO₂</td>
<td>grau</td>
<td>grau</td>
</tr>
<tr>
<td>Helium (He)</td>
<td>braun</td>
<td>grau</td>
</tr>
<tr>
<td>Kohlenmonoxid (CO)</td>
<td>gelb</td>
<td>grau</td>
</tr>
<tr>
<td>Methan (CH₄)</td>
<td>rot</td>
<td>grau</td>
</tr>
<tr>
<td>Propan (C₃H₈)</td>
<td>rot</td>
<td>grau</td>
</tr>
<tr>
<td>Schwefelwasserstoff (H₂S)</td>
<td>gelb</td>
<td>grau</td>
</tr>
<tr>
<td>Wasserstoff (H₂)</td>
<td>rot</td>
<td>grau</td>
</tr>
<tr>
<td>Sauerstoff</td>
<td>weiß</td>
<td>blau oder grau</td>
</tr>
<tr>
<td>Atem-Gase</td>
<td>weiß mit Streifen</td>
<td>weiß</td>
</tr>
<tr>
<td>Schwefeldioxid (SO₂)</td>
<td>gelb</td>
<td>grau</td>
</tr>
</tbody>
</table>

*nach Euro-Norm DIN EN 1089-3; die Schulter-Farbe ist eindeutig und entscheidend, beim zylindrischen Flaschen-Mantel sind z. T. mehrere Farben möglich, bei Industrie-Sauerstoff z. B. blau oder grau.

Quelle: https://www.industriegaseverband.de, Stand: 29.03.2011

Irrtum vorbehalten. Die Aufstellung dient Ausbildungszwecken innerhalb der Universität Bayreuth. Eine Haftung wird in jedem Fall ausgeschlossen.
0.11 Handhabung von Gas-Druckflaschen

Das Reduzier-Ventil:

- Flasche mit einer Kette oder Schelle am Labor-Tisch oder an der Wand sichern, dann
- Schutzkappe abschrauben.
- Reduzierventil (Druckminder-Ventil) anschrauben.
- Reduzierventil schließen, d. h. Einstellschraube der Gummi-Membran ganz heraus schrauben, Absperrventil ohne Kraft-Anwendung zuschrauben.
- Einstellschraube vorsichtig hineinschrauben und gewünschten Vordruck einstellen (abzulesen am Hinterdruck-Manometer).
- Am Absperr-Ventil Strömungsgeschwindigkeit regeln.
- Nach Gebrauch Haupt-Ventil der Gas-Druckflasche immer schließen, Einstell-Schraube ganz herausdrehen, Absperrventil kurz öffnen und wieder schließen, Das Hinterdruck-Manometer sollte jetzt Null (0) anzeigen.
Gefahrensymbole

nach GHS ([Global Harmonized System](http://example.com))

<table>
<thead>
<tr>
<th>GHS01</th>
<th>Explosiv. Instabile explosive Stoffe, Gemische und Erzeugnisse mit Explosiv-Stoffen, selbst zersetzliche Stoffe und Gemische.</th>
</tr>
</thead>
<tbody>
<tr>
<td>GHS02</td>
<td>Entzündlich, selbsterhitzungsfähig, selbst zersetzlich, pyrophor.</td>
</tr>
<tr>
<td>GHS03</td>
<td>Wirkt entzündend, oxidierend</td>
</tr>
<tr>
<td>GHS04</td>
<td>Komprimierte Gase, verdichtet, verflüssigt, tiefgekühlt verflüssigt, oder gelöst</td>
</tr>
<tr>
<td>GHS05</td>
<td>Ätzend. Auf Metalle korrosiv wirkend, hautätzend, schere Augenschädigung</td>
</tr>
<tr>
<td>GHS06</td>
<td>Giftig. Akute Toxizität</td>
</tr>
<tr>
<td>GHS07</td>
<td>Sensibilisierend, reizend</td>
</tr>
<tr>
<td>GHS08</td>
<td>Krebserzeugend, Mutagen, Reproduktionstoxisch</td>
</tr>
<tr>
<td>GHS09</td>
<td>Gewässergefährdend</td>
</tr>
</tbody>
</table>

Material: Arbeitsblätter [Gefahrensymbole](http://example.com) groß (DIN A4), ppt, 101k
0.13 Legende
Unser Qualitätssiegel:

Didaktik-Premium-Qualität
Das Experiment ist von uns mehrfach überprüft und wird routinemäßig in der Ausbildung eingesetzt. Wir übernehmen die Geling-Garantie sowie Gewähr für den didaktischen Sinn und die Lehrziele.

Geprüfte Qualität

Kennzeichnungen zur Verwendung im Unterricht:
Lehrende: Demonstrationsversuch für Lehrende. Lernende beobachten unter Einhaltung eines Sicherheitsabstandes.
Lernende: Versuch des Lernenden für die Arbeitsformen selbstständige Einzel- oder Gruppen-Arbeit.
Hinweis: Die Kategorien sind hierarchisch zu verstehen: „Lehrender“ kann alle anderen Versuche (unten) auch machen, Lehrende nur die so gekennzeichneten (z.B. aufgrund von Sicherheitsbestimmungen).
Bn: Entsorgungsbehälter.

Kennzeichnung: Sicherheit

Versuch unter dem Abzug durchführen.

Schutzbrille auf jeden Fall aufsetzen.

Kennzeichnung in Schriftfarbe: Ausbildung von Lehramt-Studenten
n: Versuch für jede Gruppe aufgebaut.
a: Geeignet für arbeitsteilige Gruppen-Arbeit
1: Versuch nur 1x aufgebaut. Rotationsprinzip
demo: Demonstrations-Experiment, wird vom Dozenten nur gezeigt/vorgeführt
0.14 Form:

Zeitbedarf: Grober mittlerer Zeitbedarf zur Durchführung, ggf. Angabe zu Wartezeiten
Kompetenz/Ziel:
Kompetenzen (F = Fachwissen, E = Erkenntnis-Gewinnung, K = Kommunikation; B = Bewertung) und Lehrziele, die in Zusammenhang mit dem Experiment stehen.

Vorbereitung:
Maßnahmen, die vor Beginn der Durchführung (z. T. am Tag vorher) nötig sind.

Material:
- Geräte

Chemikalien:
- Gefahrstoffe
- Lösungen

Durchführung 1:
Durchführung (Vorschrift 1 bis n)

Beobachtung 1:
Beobachtung (was kann man sehen?)

Auswertung:
Auswerten (was muss man berechnen, zeichnen, …?)

Deutung 1:
Interpretation der Beobachtung (was bedeutet das, was man gesehen hat, im chemischen Zusammenhang?)

Entsorgung:
Entsorgung, E-Sätze

Quelle:
Falls bekannt: Autor der Fassung des beschriebenen Experiments

Diskussion:
Diskussionsthemen zur Erweiterung des Themas

Hintergrund:
Fachlicher Hintergrund, fass interessant genug nicht trivial

Didaktischer Hinweis:
Hinweise zum Einsatz.

WWW:
Link zu ähnlichen Experimenten oder Hintergrund-Material/Information.
0.15 Sicherheit im Umgang mit elektrischem Strom

Abb. 1: Fehler-Stromkreis beim Berühren eines unter Spannung stehenden Lampen-Gehäuses.

Ströme bis zu etwa 5mA sind noch harmlos, aber mitunter recht schmerzhaft, die Wahrnehmungsschwelle liegt bei 1mA. Für den Grenzwert des Stromes, bei dem das willkürliche Loslassen eines spannungsführenden Leiters nicht mehr möglich ist, sind Alter und Geschlecht maßgebend (Kinder 6mA, Frauen 7mA, Männer 9mA). Zusammen mit dem mittleren Widerstand des Körpers ergibt sich daraus eine obere Grenze für ungefährliche Spannungen von etwa 50V.

Eine **Sicherung** unterbricht die Stromzufuhr bei Überlastung und bewahrt so die Isolation der Leitungen vor dem Schmelzen.

Bei einpoliger Berührung eines spannungsführenden Leiters durch einen Menschen wird, falls der Mensch leitende Verbindung mit Erde oder geerdeten Gegenständen hat, ein **Fehlerstromkreis** geschlossen. Die Außenleiter führen eine Spannung von 230V gegen Erde oder jedem mit der Erde leitend verbundenen Gegenstand, insbesondere Wasserleitungen, Heizungsrohre, Gasleitungen etc. Aber auch Steinfußböden und Wände befinden sich auf Erdpotential, so dass man immer davon ausgehen muss, dass auch zwischen Mensch und Erde eine mehr oder weniger gut leitende Verbindung besteht. Bei fachgerecht ausgeführter Installation liegen Lichtschalter im Außenleiter L. Ist dies nicht der Fall, hat es keinen Sinn – etwa bei **Reparaturen an einer Lampe** – lediglich am Lichtschalter auszuschalten. **In diesem Fall muss die Sicherung abgeschaltet werden, die immer im Außenleiter liegt.**

![Abb. 2: Links: Schutzkontakt-Steckdose deutscher Norm; oben und unten sieht man die Schutzkontakte. Rechts: Haushaltsüblicher FI-Schalter, der kleine blaue Knopf oben ist die Prüftaste.](image)

Quelle: nach Universität Freiburg, Physikpraktikum, o.A.
0.16 Kompetenzen

Einordnen von Kompetenzen in einen Anforderungsbereich

<table>
<thead>
<tr>
<th>Kompetenzbereich</th>
<th>Anforderungsbereich</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fachwissen FW</td>
<td>I</td>
</tr>
<tr>
<td>Erkenntnisgewinnung EG</td>
<td>II</td>
</tr>
<tr>
<td>Kommunikation KO</td>
<td>III</td>
</tr>
<tr>
<td>Bewertung BE</td>
<td></td>
</tr>
</tbody>
</table>

Fachwissen FW
- Kenntnisse und Konzepte zielgerichtet wiedergeben
- Kenntnisse und Konzepte auswählen und anwenden
- Komplexere Fragestellungen auf der Grundlage von Kenntnissen und Konzepten planmäßig und konstruktiv bearbeiten

Erkenntnisgewinnung EG
- Bekannte Untersuchungsmethoden und Modelle beschreiben, Untersuchungen nach Anleitung durchführen
- Geeignete Untersuchungsmethoden und Modelle zur Bearbeitung überschaubarer Sachverhalte auswählen und anwenden
- Geeignete Untersuchungsmethoden und Modelle zur Bearbeitung komplexer Sachverhalte begründet auswählen und anpassen

Kommunikation KO
- Bekannte Informationen in verschiedenen fachlich relevanten Darstellungsformen erfassen und wiedergeben
- Informationen erfassen und in geeigneten Darstellungsformen situations- und adressatengerecht veranschaulichen
- Informationen auswerten, reflektieren und für eigene Argumentationen nutzen

Bewertung BE
- Vorgegebene Argumente zur Bewertung eines Sachverhaltes erkennen und wiedergeben
- Geeignete Argumente zur Bewertung eines Sachverhaltes auswählen und nutzen
- Argumente zur Bewertung eines Sachverhaltes aus verschiedenen Perspektiven abwägen und Entscheidungsprozesse reflektieren

Quelle: [Beschluss der Kultusministerkonferenz 2004](#)
<table>
<thead>
<tr>
<th>Laborgeräte</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Etikett</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
0.18 Gefährdungsbeurteilung und Entsorgungsprotokoll

Ausbildung / Lehrende

<table>
<thead>
<tr>
<th>Versuch:</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Autor/Datum:</td>
<td></td>
</tr>
<tr>
<td>Gleichungen:</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>GHS-Symbol:</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>GHS-Nr.:</td>
<td>01 02 03 04 05</td>
</tr>
<tr>
<td>GHS-Symbol:</td>
<td></td>
</tr>
<tr>
<td>GHS-Nr.:</td>
<td>06 07 08 09</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Bezeichnung</th>
<th>w (%)</th>
<th>GHS-Nr.:</th>
<th>H-Sätze</th>
</tr>
</thead>
</table>

Stoff 1 (Edukt):

Stoff 2:

Stoff 3 (Produkt):

Stoff 4:

<table>
<thead>
<tr>
<th>Vorsichtsmaßnahmen:</th>
<th></th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Bezeichnung (ankreuzen):</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Schutzbrille</td>
<td>Schutzhandschuhe</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Bezeichnung (ankreuzen):</th>
<th></th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Weitere Maßnahmen:</th>
<th></th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Bezeichnung (ankreuzen):</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Brandschutz</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Entsorgung:</th>
<th>B1</th>
<th>B2</th>
<th>B3</th>
<th>Ausguss</th>
<th>Restmüll</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Stoff-Nr.:</th>
<th></th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Ersatzstoffprüfung:</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Schülerversuch möglich</td>
<td>Lehrerversuch</td>
</tr>
</tbody>
</table>

1.1 Entw. Experiment: Feuerlöschmethoden

Zeitbedarf: 30 Minuten
Kompetenz/Ziel:
F, E: Brandbekämpfung
E, B: Entwickeln eigener Experimente und Bewertung der Aussagekraft.

Material:
- Holz
- Chemikalien:
 - Spiritus (Ethanol)
 CAS-Nr.: 64-17-5
 Gefahr: H225, H319
 P210, P240, P305+P351+P338, P403+P233
 - Heizöl
 CAS-Nr.: 68476-30-2
 Gefahr: H226, H304, H315, H332, H351, H373, H411
 P201, P210, P243, P261, P273, P280, P301+P310,
 P302+P352, P303+P361+P353, P362, P370+P378, P331,
 P501

Aufgabe:
Entwickeln Sie auf der Grundlage von Bedingungen für das Verbrennen Feuerlösch-Methoden für einen Brand eines der oben genannten Stoffe.
Beschreiben Sie die Durchführung:

Zu erwartende Beobachtung:

Entsorgung:

Quelle:

Hintergrund:

Didaktische Hinweise:
Verbrennungsdreieck; Bestandteil im Grundschul-Unterricht, verkannt im Gymnasium

WWW:
1.2 Entw. Experiment: Baby-Windel

Zeitbedarf: 30 Minuten
Kompetenz/Ziel:
F, E: Eigenschaften von Absorbern
E, B: Entwickeln eigener Experimente und Bewertung der Aussagekraft.

Material:
• moderne Baby-Windel
•

Chemikalien:
•
•
•

Aufgabe:
Finden Sie heraus, wie eine Baby-Windel funktioniert.
Beschreiben Sie die Durchführung:

Zu erwartende Beobachtung:

Entsorgung:

Quelle:

Hintergrund:

Didaktische Hinweise:

WWW:
1.3 Entw. Experiment: Brausepulver

Zeitbedarf: 30 Minuten

Kompetenz/Ziel:
F, E: Analyse von Bestandteilen eines Nahrungsmittels
E, B: Entwickeln eigener Experimente und Bewertung der Aussagekraft.

Material:
- ...
- ...
- ...

Chemikalien:
- handelsübliches Brause-Pulver
- ...
- ...
- ...

Aufgabe:
Zeigen Sie mit Hilfe von Experimenten, wie Brause-Pulver zusammengesetzt ist.

Beschreiben Sie die Durchführung:

Zu erwartennde Beobachtung:

Entsorgung:

Quelle:

Hintergrund:

Didaktische Hinweise:

WWW:
1.4 Entw. Experiment: Elektrische Energie

Zeitbedarf: 30 Minuten
Kompetenz/Ziel:
F, E: Energie-Erzeugung und -Speicherung
E, B: Entwickeln eigener Experimente und Bewertung der Aussagekraft.
Material: Aus LEGO-Kasten 9684 elab
- 2 Motoren
- 2 Verbindungskabel
- 1 Achsenverbinder 90° (blau)
- 1 Kondensator
- 1 Solarmodul
- 1 Lämpchen
- Kleinteile

Aufgabe:
Demonstrieren Sie das „Erzeugen“, Speichern, Transportieren und „Verbrauchen“ von elektrischer Energie für eine Jgst. 5
Beschreiben Sie die Durchführung:
Aufbauhilfe:

Zu erwartende Beobachtung:

Quelle:
Didaktik der Chemie, Universität Bayreuth
Hintergrund:

Didaktische Hinweise:
Fordern Sie ggf. Unterstützung durch die Betreuer an.

WWW:
http://de.wikipedia.org/wiki/Energie
1.5 Entw. Experiment: Mess-Methoden

Zeitbedarf: 30 Minuten
Kompetenz/Ziel:
F, E, B: Genauigkeit von Mess-Methoden
E, B: Entwickeln eigener Experimente und Bewertung der Aussagekraft.

Material:
- Becherglas, 150 mL
- Mess-Zylinder, 100 mL
- Mess-Kolben, 100 mL
- Voll-Pipette, 100 mL
- Bürette, 50 mL (mit Stativ und Büretten-Klemme)

Aufgabe:

Beschreiben Sie die Durchführung:

Zu erwartende Beobachtung:

Quelle:

Hintergrund:

Didaktische Hinweise:
1.6 Entw. Experiment: Geisterhand

Zeitbedarf: 30 Minuten
Kompetenz/Ziel:
F: Fachwissen
E: Erkenntnisgewinnung
K: Kommunikation
B: Bewertung; Entwickeln eigener Experimente

Material:
- Becherglas, 100 mL
- Versuchsanordnung „Geisterhand“

Vorbereitung:
Versuchsanordnung „Geisterhand“ aufbauen.

Aufgabe:
Begießen Sie die Versuchsanordnung „Geisterhand“ mit ca. 100 mL Leitungswasser. Stellen Sie Hypothesen auf, wie der Versuch funktioniert.

Hypothese 1:

Hypothese 2:

Hypothese 3:

Quelle:
nach „Das verrückte Chemie-Labor“ von A. Korn-Müller

Hintergrund:

Didaktische Hinweise:
Fordern Sie ggf. weitere Gerätschaften vom Betreuer an.
2. Stoffgemisch und Reinstoff / Termin: 05.05.2020

2.1 Züchten von Kristallen D!

a) Deutsch

Zeitbedarf: 15 Minuten + verteilte Pflegezeiten

Kompetenz/Ziel:
E: Entstehung regelmäßiger Formen in der Natur

Material:
- Becherglas, 600 mL, weit
- 2 Bechergläser, 150 mL, hoch
- Magnetrührer, heizbar
- Magnetrührstäbchen
- Löffel-Spatel
- Pinzette
- Stativ, Muffe, Klammer

Chemikalien:
- Kaliumaluminiumsulfat
 CAS-Nr.: 7784-24-9
 KAl(SO₄)₂·12H₂O
 L= 110g/L
- Kaliumchromsulfat
 CAS.: 7788-99-0
 KCr(SO₄)₂·12H₂O
 L= 250 g/L

 Achtung
H315, H319
P302+P352, P305+P338

- Kupfer(II)-sulfat-Pentahydrat
 CAS-Nr.: 7758-99-8
 CuSO₄·5H₂O
 L= 317 g/L

 Achtung
H302, H315, H318, H410
P: 273, P302+352, P305+351+338

Durchführung:

Herstellen gesättigter Lösungen (für eine 4er-Gruppe):
In das große Becherglas 500 mL VE-Wasser füllen, auf ca. 40°C erwärmen und so viel Substanz darin lösen wie möglich; dauet u. U. 60 Minuten (der Wert für die Löslichkeit ist eine Orientierung). Abkühlen lassen. Ggf. filtrieren. Dann Lösung ca. 1 Woche stehen lassen. Erst wenn sich ein Bodenkörper gebildet hat, ist die Lösung darüber gesättigt!

Impfkristalle:
In die Petrischale ca. 0,5-1 cm hoch Lösung füllen und offenstehen lassen. Von den Kristallen am Boden einen schönen aussuchen und als Impfkristall verwenden.

Wachstum:
Den Impfkristall an einen Faden binden; das andere Ende so am Holzstäbchen befestigen, dass der Kristall, ins Becherglas gehängt, ca. 2 cm über dem Boden schwebt (denken Sie daran, dass der Kristall groß und schwer werden soll!). Ca. 100 mL Lösung eingießen. An einen ruhigen, nicht zu warmen (oder temperaturveränderlichen) und zu trockenen Ort stellen (schlecht: Abzug, Fensterbrett; besser: in einen Schrank oder abgedeckt auf den Schrank).

Wichtig: Sollte es nötig werden, Lösung nachzubereiten, so sollten Sie sich immer durch den Bodenkörper überzeugen lassen, dass die Lösung wirklich gesättigt ist, sonst kann der schöne Kristall ziemlich schnell wieder verschwinden oder „angefressen“ aussehen! Welch ein Jammer!
Schutz:

Beobachtung:
In 4-6 Wochen erhält man Kristalle mit 2-3 cm Kantenlänge!

Entsorgung:
Nicht benötigte Lösungen eindampfen lassen und Salze wiederverwenden.

Quelle:
Allgemeingut

Diskussion:

Didaktischer Hinweis:
Gut kristallisieren noch: die beiden Blutlaugen-Salze (langsam; rote Säulen mit Spitzen an den Enden bzw. gelbe vierseckige Plättchen), Ammoniumaluminiumsulfat NH4Al(SO4)2*12H2O (farblose Oktaeder, „Deo-Kristall“), Natriumdihydrogenphosphat NaH2PO4*2H2O (farblose Oktaeder).

Schlecht kristallisieren aus wässriger Lösung unter den geschilderten Bedingungen: Kochsalz, Saccharose.

VARIANTE 1: Schleifen Sie von einem nicht so gut geratenen Kristall eine Kante oder eine Spitze mit Sandpapier ab oder bohren Sie vorsichtig ein Loch und hängen Sie ihn wieder in die Lösung. Es ist überraschend, was passiert!

VARIANTE 3: Mit Zusatz von Kalilauge oder Natronlauge (w= 1%) lassen sich Alaune in den kubischen Habitus zwingen, Kochsalz durch Harnstoff oder Glycin in den oktaedrischen. Warum das funktioniert, ist ungeklärt.

WWW:
http://www.chemieunterricht.de/dc2/kristalle/dc2kt_32.htm
b) **Growing of crystals**

Need of Time: 15 minutes + growing time

Goals:
E: formation of periodic structures in nature
K: Engl. Versuchsanleitung

Material:
- beaker, 600 mL
- 2 beakers, 150 mL
- wooden rods (pencils)
- thread (polyester or very thin fishing line)
- tweezers
- (sandpaper)
- Very much patience!!!
- hot plate stirrer
- stirring bar
- spatula with spoon
- seed crystals or petri dish
- superglue
- (Zapone varnish, paint brush)

Chemicals:
- Potassium aluminum sulfate
 CAS-Nr.: 7784-24-9
 \(\text{KAl(SO}_4\text{)}_2\cdot\text{12H}_2\text{O}\)
 \(L=110\text{ g/L}\)
- Potassium chromium sulfate
 CAS-Nr.: 7788-99-8
 \(\text{KCr(SO}_4\text{)}_2\cdot\text{12H}_2\text{O}\)
 \(L=250\text{ g/L}\)
- Copper (II) sulfate pentahydrate
 CAS-Nr.: 7758-99-8
 \(\text{CuSO}_4\cdot\text{5H}_2\text{O}\)
 \(L=317\text{ g/L}\)

Warning:
H315, H319
P302+P352, P305+P338

Procedure:

Producing the saturated solutions: Fill into the beaker 600 mL, 500 mL of dist. water. While heating to 105°F try to dissolve as much of the substance as possible. Let the solution cool down. It will be saturated no sooner as you can see a solid precipitate at the bottom at room temperature. If not so, leave it for evaporation for about one week. Decant the saturated solution in a new beaker or bottle.

How to get seed crystals: Fill approx. 10 mL of your solution into the petri dish. Leave it for evaporation without lid. After a few days: select one of the crystals (the most beautiful one) from the bottom and use it as a seed crystal.

Growth: Attach the seed crystals to the thread (try superglue); bind the other end to the wooden rod and fix it about 2 cm above the bottom of the beaker (Remember: you expect the crystal to grow large). Hook the crystal in the saturated solution. Place it at a quiet but not too warm location (bad: flue, windowsill; good: in a cupboard, or covered on a cupboard).

Important: If it’s necessary to re-add solution, you must make sure that the solution really is saturated (look for solid precipitate at the bottom). Otherwise the nice crystal could disappear (dissolve again). What a misery!

Protection: Some conditions (e.g. very young students, corrosion) could make it necessary to cover the crystal with varnish. Here Zapon vanish is needed. It is soluble in acetone.

Observation:
After 4 to 6 (10) weeks you will get crystals with an edge length of 2-3 cm.

Disposal:
Evaporate solutions, which are not needed any more. Salt can be used again.

Source:
Common

Discussion:

Notes:
Fast crystallization:
- both prussiates of potassium (slow growth; red columns with peaks at the edges respectively yellow square pads)
- NH₄Al(SO₄)₂*12H₂O (colorless octahedrons, deodorant crystal)
- NaH₂PO₄*2H₂O (colorless octahedrons)

Slow, tricky crystallization in aqueous solution under normal conditions:
- common salt
- sucrose

Options:
- Sand a crystal at one ridge or drill a hole in one face. Hook the crystal in the solution again. It is surprising what happens!
- First, let grow a crystal of chromium alum, and then hook it in a solution of aluminum alum. This way you get a chimera. Groups of students may try different concentrations (from 1:10 Cr:Al to 1:20, 1:50, 1:200); the results will be different shades of Bordeaux color.
- After adding 1% KOH or NaOH, alums will form a cubic habitus, common salt with urea or glycine will form an octahedral habitus. The reasons for this phenomenon are not well understood yet.

WWW:
http://www.chemieunterricht.de/dc2/kristalle/dc2kt_32.htm
http://www.crystalgrowing.com/recipes/sugar/sugar.htm
c) Bewertungsaufgabe

Aufgabe:
Entscheiden Sie, ob folgendes Experiment didaktisch sinnvoll ist.

Sugar Crystals or Rock Candy
- Stir 3 cups of sugar into 1 cup of boiling water. Keep stirring until as much sugar has dissolved as possible. You can add food coloring to the solution if you like.
- Pour the solution into the container you have selected for growing the crystal. Avoid getting any undissolved sugar in this container, since the sugar will provide a growing surface for the crystals, causing them to grow on your container.
- Suspend a wooden skewer or rough string into the solution.
- Allow the solution to sit undisturbed.

Rock candy is good enough to eat!
(Andreas Praefcke)

https://commons.wikimedia.org/wiki/File:Rock_Candy.jpg
2.2 Trennung einer Suspension von Sand und Wasser

Zeitbedarf: 10 Minuten, Lernende, n
Kompetenz/Ziel:
F: Heterogene Gemische zeigen unterschiedliche Phasen
E: Sedimentieren und Dekantieren zur Reinigung von Fluss- oder Abwasser
B: Eignung verschiedener Trenn-Verfahren je nach Qualitätsanforderung

Material:
- Becherglas, 150 mL
- Becherglas, 100 mL
- Glasstab
- Löffel-Spatel
- Schale für nassen Sand

Chemikalien:
- Quarz-Sand
- Garten-Erde

Durchführung 1:
Zwei Löffel Quarz-Sand mit ca. 50 mL Leitungswasser versetzen und gut umrühren. Ca. 1 Minute absetzen lassen, dann den Überstand in das zweite Becherglas abdekantieren.

Beobachtung 1:
Man erhält leicht trübes Wasser

Durchführung 2:
wie Durchführung 1, jedoch mit Garten-Erde und Leitungswasser

Beobachtung 2:
Die Trennung ist viel schlechter als bei Durchführung 1: der Überstand ist bräunlich und trüb, viele Teilchen schweben im Wasser.

Deutung:
Die Teilchen-Größe und –Dichte und damit die Sink-Geschwindigkeit ist für den Trenn-Effekt verantwortlich.

Entsorgung:
Sand: in der Schale sammeln, trocknen und wiederverwenden
Garten-Erde: E3
Überstand: E1

Quelle:
Allgemeingut

Diskussion:
Kann man das gefilterte Wasser trinken? Die Trennung gelingt nicht vollkommen.
Siehe auch: Schlämm-Probe zur Unterscheidung verschiedener Bodentypen
Voraussagen bezüglich des Ergebnisses?
2.3 Modellversuch Trennung von Kunststoff-Abfällen D!

Zeitbedarf: 10 Minuten; Lehrende, Lernende
Kompetenz/Ziel:
F: Trennung von Stoff-Gemischen durch unterschiedliche Dichte
E: Anwendung im Recycling als technisches Verfahren

Material:
- Becherglas, 600 mL
- Löffel-Spatel
- Magnetrührer, regelbar
- Magnet-Rührstäbchen, -Entferner
- Dichte-Spindel (0,7-2 g/L)

Chemikalien:
- Natriumchlorid
 Kochsalz
 CAS-Nr.: 7647-14-5

Durchführung 1 (Lernende):

Beobachtung 1:
PE schwimmt von Beginn an. Dann taucht PS auf, PVC bleibt liegen.

Deutung 1:
Welche Dichte erwarten Sie etwa für die Kunststoffe?
d(PE)~X,xx g/cm³
d(PS)~ X,xx g/cm³
d(PVC)~ X,xx g/cm³

Durchführung 2 (Lernende):

Beobachtung 2:
Erfahrungswerte: d(NaCl/H₂O) = 1,070-1,150 g/cm³

Entsorgung:
Kunststoff-Streifen: abtrocknen und wiederverwenden; Kochsalz-Lösung: E1

Quelle:

Diskussion:

Hintergrund: Literaturwerte
d(PE)= 0,93 g/cm³
d(PS)= 1,05 g/cm³
d(PVC)= 1,38 g/cm³

Didaktischer Hinweis:
VARIANTE 1: Ein Teil der Gruppen gibt nur so lange Salz zu, bis das PS aufsteigt, die anderen Gruppen führen das Experiment vollständig durch. Dann wird getrennt die Dichte der Lösungen bestimmt.

VARIANTE 2: Gleiche oder unterschiedlich gefärbte Kunststoff-Proben verschiedener Dichte verwenden.
2.4 Mischen von Flüssigkeiten (Modell-Vorstellungen)

Zeitbedarf: 10 Minuten, Lehrende, demo
Kompetenz/Ziel:
E: Teilchen-Modell: Mischen von Flüssigkeiten, B: Modell-Vorstellungen kritisch betrachten

Material:
- 2 Trichter, d= 80 mm
- Stativ
- 2 Büretten-Klemmen
- Peleus-Ball
- 2 Voll-Pipetten, 25 mL
- 2 Büretten, 50 mL
- 2 Stopfen (für Büretten)
- n-Hexan
 CAS-Nr.: 110-54-3
 Gefahr: H225, H304, H361f, H373, H315, H336, H411
 P201, P240, P273, P301+P310, P311, P302+P352, P403,P235
- VE-Wasser

Chemikalien:
- Spiritus (Ethanol)
 CAS-Nr.: 64-17-5
 Gefahr: H225, H319
 P210, P240, P305+P351+P338, P403+P233
- Propanon (Aceton)
 CAS-Nr.: 67-64-1
 Gefahr: H225, H319, H336, EUH066
 P210, P240, P305+P351+P338, P403+P233

Mögliche Aufgabe:
Voraussage: Wie verändert sich beim Mischen das Gesamt-Volumen?

Durchführung 1:
Bürette 1 bis zur 25 mL-Markierung mit VE-Wasser füllen, dann mit Spiritus bis zur 0-Marke überschichten. Bürette mit dem Stopfen verschließen und einige Male kippen, um die Flüssigkeiten zu mischen. Nach Überschichtung der Flüssigkeiten sofort demonstrieren.

Beobachtung 1:
1) es gibt keine Phasen-Grenze
2) man sieht während des Mischens Schlieren
3) zum Schluss bildet sich ein homogenes Gemisch
4) Volumen-Kontraktion um ca. 1-15 mL

Deutung 1:
„Erbse und Hirse“-Modell

Durchführung 2:
Wie Durchführung 1: mit Aceton und Hexan, Sofort demonstrieren

Beobachtung 2:
1) es gibt keine Phasen-Grenze
2) es bildet sich schließlich ein homogenes Gemisch
3) Volumen-Expansion um ca. 0,5-1 mL

Deutung 2:
„Erbse und Hirse“-Modell kann nicht zutreffen

Entsorgung:
E10, B3

Quelle:
Teil 1: Schulbücher / Teil 2: Okamiya, J. in cim.did. 8, S33-42, 1982

Diskussion:
Modell-Vorstellungen zur Erklärung von Versuchsergebnissen
2.5 Destillation im kleinen Maßstab D!

Zeitbedarf: ca. 15-20 Minuten, Lernende

Kompetenz/Ziel:
F = Trennung zweier mischbarer Flüssigkeiten
E = Funktionsweise der Destillation zur Stofftrennung, Kennenlernen der Experimentiertechnik mit medizinischen Geräten
K = Entwickeln einer funktionsfähigen Apparatur, ggf. Verbesserungsmaßnahmen
B = Bewertung des Reaktionsproduktes und der Funktionsweise der Apparatur

Material:
- Injektionsfläschchen 10mL und 5mL
- 1 Chlorbutylstopfen
- 1 Pipettenspitze gelb oder Kanüle Ø 1,2, L=4mm
- 1 Silikonenschlauch Ø 7mm 20cm lang
- Reagensglashalter
- Teelicht
- 1 Uhrglas Ø 6cm
- Feuerzeug
- Siedesteinchen
- Drahtstück Ø 1mm, biegbar 20cm

Chemikalien:
- Rotwein

Didaktische Hinweise:
Der Arbeitsauftrag für offenes Experimentieren kann lauten: „Entwickelt mit Hilfe der bereitliegenden Materialien eine Destillationsapparatur, mit der Alkohol aus dem Gemisch Rotwein getrennt werden kann. Zur Überprüfung der Funktionsfähigkeit wird das Destillat angezündet“.

Durchführung 1:
Skizze eines möglichen Versuchsaufbaus:

Apparatur entsprechend der Skizze aufbauen und etwa zu einem Drittel mit Rotwein befüllen. Das Destillat in das Uhrglas schütten und entzünden. VORSICHT: Die Flamme ist bei sauberer Destillation kaum sichtbar, deshalb vorsichtig mit der Hand auf Wärmeentwicklung (Heiß!) prüfen.

HINWEISE ZUR DURCHFÜHRUNG:
Temperatur kontrollieren: der Wein sollte gleichmäßig, aber nur leicht sieden.
Siedesteinchen verwenden, um Siedeverzug zu vermeiden.
Mit Hilfe des Drahtstücks können beide Fläschchen miteinander verbunden werden, damit eine stablere Apparatur entsteht. So muss nur das größere Fläschchen mit dem Reagenzglashalter gehalten werden.

Beobachtung 1:
Der Rotwein beginnt zu Sieden und im Schlauchstück sammeln sich farblose Flüssigkeitstropfen, die bei entsprechender Neigung des Schlauches in das kleine Injektionsfläschchen laufen. Das farblose Destillat ist entzündbar und brennt mit kaum sichtbarer Flamme.

Deutung 1:
Verwende folgende Begriffe, um diese Methode der Stofftrennung zu erklären:

- Gasförmig, Wasser, Siedetemperatur, Alkohol, Aggregatzustand, flüssig, Anziehungs-kräfte, Energie

Erkläre das Trennverfahren der Destillation anhand des folgenden Teilchenmodells für das Stoffgemisch Rotwein:

![Teilchenmodell](image)

LÖSUNG: Zwischen den Alkohol-Teilchen herrschen Anziehungskräfte, die getrennt werden, wenn ca. 78°C erreicht sind. Dann haben einzelne Alkohol-Teilchen so viel kinetische Energie, dass sie sich aus dem Gemisch in die Gasphase übergehen. Um die Anziehungskräfte zwischen Wasserteilchen zu trennen sind ca. 100°C notwendig. Wird die Energiezufuhr unter 100°C gehalten, dann verdunsten nur die Alkohol-Teilchen.

Diskussion:

Entsorgung:
Ausguss

Quelle:
Homepage von Peter Schwarz www.micrecol.de/stoff1.html
2.6 Wann erfolgt Mischung, wann Reaktion? D!

Zeitbedarf: 30 Minuten, Lernende

Kompetenz/Ziel:
- **F:** Rundfilter-Methode der Papier-Chromatographie
- **E:** Unterscheidung von Mischen und Reagieren

Material:
- Petrischale
- Schere
- 2 Reagenzgläser, d= 10 mm
- 4 Pasteur-Pipetten, Hüten

Chemikalien:
- **Kaliumhexacyanoferrat(II)-Lösung**
 c= 0,1mol/L
 CAS-Nr.: 13943-58-3
- **Essigsäure**
 w= 5%
 CAS-Nr.: 64-19-7
- **Eisen(III)-chlorid-Lösung**
 c= 0,1mol/L
 CAS-Nr.: 7705-08-0
- **Brillantgrün (s)**
 CAS-Nr.: 633-03-4, C.I. 42010
- **Spiritus (Ethanol)**
 CAS-Nr.: 64-17-5
- **Kristallviolett (s)**
 CAS-Nr.: 548-62-9

Vorbereitung durch den Lehrenden:
Im Reagenzglas: Die Brillantgrün-Lösung in 1 mL Wasser ansetzen, Kistallviolet Lösung in 1 mL Spiri-ritus lösen.
Jeweils sehr wenig Substanz verwenden (ca. 1mg).

Vorbereitung durch die Lernenden:
*Etwa in die Mitte des Rund-Filters ein ca. 1 cm durchmessendes Loch anbringen (Wettbewerb: Wie macht man das am besten?)
*Aus einem 2-3 cm breiten Streifen des anderen Rund-Filters ein Röllchen formen und als Doch durch das Loch stecken.
Petrischale zur Hälfte mit Laufmittel (Essigsäure) füllen.
Durchführung:

Tragen Sie zur Trennung im Kreis um das Loch herum Flecken der folgenden Stoffe mit den Pasteur-Pipetten auf:

- schwarzer Folienstift
- Brilliantgrün-Lösung
- Kristallviolett-Lösung
- Gemisch aus grüner und violetter Farbstoff-Lösung (mischen auf dem Uhrglas bis diese blau erscheint)
- Kaliumhexacyanoferrat(II)-Lösung
- Eisen(III)-chlorid-Lösung
- Gemisch aus den Lösungen 5 und 6 (auf dem Uhrglas mischen: je 1 Tropfen von jeder Lösung)

Beobachtung:

Nach 5-10 Minuten:

1) läuft nicht mit
2) und 3) laufen so weit wie die Komponenten aus Gemisch 4)
5) und 6) laufen einzeln
7) wird nicht aufgetrennt

Deutung:

1) wird nicht transportiert
4) ist ein trennbares Gemisch aus 2) und 3)
Bei 7) ist ein neuer Stoff aus den beiden Edukten 5) und 6) entstanden

Entsorgung:

E3, E1

Quelle:

Wagner, W.: ChidS 9, 1997, 324-344

Diskussion:

- Vorstellung Lernender von Mischung und Reaktion
- Was sagt die Farbenlehre?
- grün + violett → blau
- gelb + gelb → blau?
- Methodik der Chemie
2.7 Trennen durch Sublimation D!

Zeitbedarf: 10 Minuten, Lernende
Kompetenz/Ziel:
F: Sublimation ermöglicht eine Stoff-Trennung (Stoff-Ebene)
E: Teilchen gehen aus dem Feststoff-Verband direkt in die Gas-Phase

Material:
- Standkolben, 100 mL
- Brenner, Feuerzeug
- Dreifuß
- Keramikfaser-Platte
- Spatel
- Petrischale, d= 80 mm
- Eiswürfel

Chemikalien:
- Iod/Sand-Gemenge
 CAS-Nr.: 7553-56-2 (Iod)

Durchführung:
Mit dem Iod/Sand-Gemenge den Boden des Kolbens gut bedecken dann mit kleiner Flamme erwärmen.
Auf die Hals-Öffnung die Petrischale mit 2-3 Eiswürfeln setzen.

Beobachtung:
Es entstehen violette Dämpfe, die sich am Boden der Petrischale niederschlagen.
Mit der Zeit wachsen dort dunkle, glänzende Kristalle.

Deutung:
Iod schmilzt nicht, sondern sublimiert.

Entsorgung:
Übriges Gemenge nach dem Abkühlen in einem Gefäß sammeln und wiederverwenden. Iod-Kristalle so gut wie möglich mit dem Spatel abkratzen und zurück zum Sand. Nicht anfassen!
Verbliebene kleine Mengen mit Leitungswasser abspülen.

Quelle:
Schul-Bücher / Allgemeingut

Diskussion:
Statt Iod verwendbare Stoffe: Naphthalin, (Campher), Benzoesäure, die aber vor dem Verdampfen schmelzen.
Einsatz der Sublimation zum Trennen von Stoffen.
2.8 Trennungen an Brause-Pulver D!

Zeitbedarf: 15 Minuten, Lehrende, n

Kompetenz/Ziel:
- **F:** Säuren, Kohlendioxid, Kohlensäure, Zitronensäure, Weinsäure, Farbstoffe
- **E:** Möglichkeiten der Stoff-Trennung
- **B:** Fertigung eines konsumierbaren Alltagsproduktes

Material:
- Petrischale
- Lupe
- 2 Bechergläser, 100 mL

Chemikalien:
- **Brause-Pulver** (Ahoi von Frigeo, am besten Himbeere)

Durchführung 1:
Das Päckchen mit dem Brause-Pulver erst gut schütteln, dann öffnen. Die Hälfte davon in die Petrischale schütten, schwenken und mit der Lupe beobachten. Wie viele unterschiedliche Komponenten könne Sie optisch erkennen?

Versuchen Sie, mit der angefeuchteten Fingerspitze nur die größten Kristalle herauszufischen.

Geschmack?
In einer Hälfte der Petrischale sollten sich nach erfolgreichem Schwenken eher die kleinen Kristalle befinden. Machen Sie den Fingerspitzen-Test. Geschmack?

Zur Interpretation ziehen Sie die Inhaltsstoff-Deklaration auf der 10er-Packung mit heran.

Falls Zitronensäure deklariert wurde: fischen Sie unter der Lupe die Kristalle mit dem farbigen Belag heraus und probieren Sie.

Beobachtung 1:
Ersichtlich sind drei Komponenten: große farblose, kleine weiße bis braune und kleine farbige Kristalle.

Die großen Kristalle schmecken süß, die kleinen weißen „unangenehm“ und die bunten sauer.

Deutung 1:
Bei den großen Kristallen handelt es sich um Zucker. Die kleinen, unangenehm schmeckenden Kristalle bestehen aus Natriumhydrogencarbonat (NaHCO₃), bei den bunten Kristallen handelt es sich um mit Farbstoff überzogene Säure.

Durchführung 2:
In eines der Bechergläser ca. 50 mL Trinkwasser füllen und die andere Hälfte des Brause-Pulvers hineinschütten. Nicht rühren!

Beobachten Sie die Oberfläche.

Beobachtung 2:
Farbige Kristalle schwimm an der Oberfläche, bei Brause-Pulver Himbeer-Geschmack sind zwei Farbstoffe (violett, dunkelblau) erkennbar. Farblose Kristalle sinken auf den Boden.

Deutung 2:
Der Farbstoff für einig Brause-Pulver (z. B. Himbeer-Geschmack) besteht aus zwei unterschiedlichen Farbstoffen.

Dadurch wird der Gesamt-Farbeindruck „natürlicher“.

Durchführung 3:
Rühren Sie zweimal um, nicht mehr! Nachdem die Gasentwicklung aufgehört hat, dekantieren Sie den Überstand möglichst vollständig und ohne allzu viel Bewegung in das andere Becherglas. Testen Sie den Geschmack in beiden Bechergläsern.
Beobachtung 3:
Der Überstand schmeckt sehr sauer, der Rückstand süß.

Deutung 3:
Im Überstand befindet sich die Säure, der Rückstand besteht aus Zucker.

Entsorgung:
E1 (verdünnen und in den Ausguss geben).

Quelle:
Wagner, W.; Chemie in der Schule 47, 2000, S. 65-72

Hintergrund:
Brause-Pulver ist eine pulvrige Mischung aus Zucker, Säure (Wein- oder Zitronensäure) und Natriumhydrogencarbonat. Hinzu kommen Aromen und Farbstoffe. Beim Auflösen in Wasser brausen die Brause-Pulver stark auf, da die organischen Säuren aus Natriumhydrogencarbonat Kohlendioxid entwickeln: die feste organischen Säure HA reagiert mit dem Anion des Natriumhydrogencarbonats in einer Säure/Base-Reaktion zu Kohlensäure, diese zerfällt in einem zweiten Schritt zu Kohlendioxid und Wasser:

\[
\text{HCO}_3^- + \text{HA} \rightarrow \text{H}_2\text{CO}_3 + \text{A}^- \\
\text{H}_2\text{CO}_3 \rightarrow \text{CO}_2(g) + \text{H}_2\text{O}
\]

Das Verhältnis ist so zusammengestellt, dass nach erfolgter Reaktion am Ende im Wasser ein Säure-Überschuss verbleibt. Dadurch wird das Auftreten von laugigem Carbonat-Geschmack vermieden. Bei den Aromen handelt es sich um keine Feststoffe. Warum aber ist das Brause-Pulver in fester Form erhältlich?

Die Aroma-Stoffe werden von Maltodextrin-Körnchen adsorbiert.
2.9 Stoffart- und Zustandsänderung B/D!

Zeitbedarf: 5 Minuten, Lernende, n
Kompetenz/Ziel: E, B: Unterscheidung Zustands- und Stoffart-Änderung

Material:
- Tiegelzange
- feuerfeste Unterlage
- Brenner
- Feuerzeug

Chemikalien:
- Platin-Draht
 CAS-Nr.: 7440-06-4
- Magnesium-Band
 CAS-Nr.: 7439-95-4

Durchführung 1a:
Platin-Draht (am besten ein kurzes Stück mit einem Ende in einen Glasstab eingeschmolzen) in der Brenner-Flamme erhitzen.
Beobachtung 1a:
Der Draht glüht auf

Durchführung 1b:
Platin-Draht aus der Brenner-Flamme entfernen
Beobachtung 1b:
Der Draht glüht nicht mehr und zeigt wieder seinen metallischen Glanz.
Deutung 1:

Durchführung 2a:
ca. 5-8 cm Magnesium-Band mit der Tiegelzange anfassen und in die Brenner-Flamme halten. Nicht direkt in die Flamme schauen. Abzug, sonst kommt die Feuerwehr.
Beobachtung 2a:
Das Magnesium-Band entzündet sich und brennt mit sehr heller Flamme.

Durchführung 2b:
„Magnesium-Band“ aus der Brenner-Flamme entfernen.
Beobachtung 2b:
Aus dem grauen Magnesium-Band ist ein weißes, sprödes Material geworden.
Deutung 2:

Entsorgung:
Verbrennungsprodukt von Magnesium in den Hausmüll

Quelle:
EYDAM-Chemie, Praktikum Chemischer Demonstrationen, 1968

Didaktischer Hinweis:
Die Chemie beschäftigt sich, vereinfacht ausgedrückt, im Wesentlichen mit Stoffart-Änderungen, die Physik mit Zustands-Änderungen.
2.10 Beispiele einfacher Experimente für den Einstieg in die Chemie in der ersten UE des Jahres D!

Das Beispiel stammt aus einer Unterrichtssequenz aus 3-4 Stunden, erarbeitet im Rahmen des Seminars zur Didaktik der Chemie, WS99/00, von Peter Pösch, Andreas Dörfler, Christian Maurer und Sandra Hollmach. Diese Unterrichtseinheit dient dazu, Lernenden in der ersten Chemie-Stunde (bayrische Real schule, genauso gut aber auch Gymnasium) in die Arbeitsweise der Chemie als Wissenschaft einzuführen. Verfügbar sind 4 Themenbereiche:

<table>
<thead>
<tr>
<th>Thema</th>
<th>Lehr-Ziele</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kunststoffe</td>
<td>Unterscheidung von PE und PS</td>
</tr>
<tr>
<td>Gewebe</td>
<td>Unterscheidung von Wolle und Baumwolle</td>
</tr>
<tr>
<td>Holz</td>
<td>Unterscheidung von Laub- und Nadelholz</td>
</tr>
<tr>
<td>kristalline Stoffe</td>
<td>Unterscheidung von Salz, Zucker, Zitronensäure und ihren Gemengen</td>
</tr>
</tbody>
</table>

Hier als Beispiel wurden die kristallinen Stoffe ausgewählt.
Kristalline Stoffe
Querbezüge: Versuch zur Charakterisierung von Kristallinen Stoffen (LP RS 1999)

Erdkunde
9.4: Deutschland

Hauswirtschaft
10.3: Sich gesund ernähren:
 Vitamine

Biologie
8.2: Schutz- und Abwehrsystem
 beim Menschen:
 Maßnahmen zur
 Unterstützung der
 körpereigenen Abwehr:
 Vitamin C

Physik
8.6: Einführung in die
 Elektrizitätslehre
9.1: Wärme-Lehre
9.3: Elektrizitätslehre
10.3: Grundlagen der Energie-Versorgung

Chemie:
9.1: Eigenschaften und
 Veränderungen von Stoffen
9.1: Stoffe: Reinstoffe und
 Gemische
 Bindung: Ionen-Bindung
9.4: Chemie in Natur, Technik und
 Alltag: Salze als Düngemittel

Chemie:
10.2: Vielseitig verwendbare
 Rohstoffe und Produkte:
 Carbonsäuren:
 Zitronensäure
10.3: Nachwachsende Rohstoffe:
 Chemie der Biomoleküle:
 Kohlenhydrate: Glucose
10.3: Wirkstoffe: Vitamin C
Untersuchung kristalline Stoffe (Bsp.: Komplettanleitung für Lehrende)

Zeitbedarf: ca. 45 Minuten

Kompetenz/Ziel: Untersuchung von verschiedenen (Optisch ähnlich erscheinenden) kristallinen Substanzen bezüglich deren Geschmack und Verhalten beim Erhitzen

Gruppen-Größe: 2 (max. 3) Lernende

Material:
- Feuerzeug/Streichhölzer
- Teelicht
- 5 handtellergroße Schälchen aus Alu-Folie (eventuell selbst von Lernenden vor Versuchsbeginn gefertigt)
- 2 Gläser frisches Wasser (zum Mundspülen)

Chemikalien (je 200g, in Bechergläsern mit VERSCHLÜSSELTER Kennzeichnung):
- Probe 1: weißer Kristall-Zucker (fein)
- Probe 2: Zitronensäure (p. A.)
- Probe 3: Speise-Salz
- Probe 4: Zucker:Zitronensäure-Mischung (4:1)
- Probe 5: Salz:Zitronensäure-Mischung (4:1)

Sicherheitshinweise:
- Lange Haare Lernender müssen zurückgebunden werden.
- Die brennende Kerze sollte auf der Unterlage mit ausreichendem Abstand von den Lernenden platziert sein.
- Die erhitzten Enden der Alu-Rinnen sind heiß.

Durchführung 1:

Durchführung 2: Geschmackstest

Beobachtung 2:
- Probe 1: Der Geschmack von Zucker ist wohlbekannt.
- Probe 2: Der saure Geschmack ist bekannt, führt aber nicht zu einer spezifischen Vermutung.
- Probe 3: Der Geschmack von Salz ist wohlbekannt.
- Proben 4 und 5: Bei den Mischungen wird diejenige mit dem Zucker als wesentlich „ange- nehmer“ als die Mischung mit Salz empfunden.
Durchführung 3: Verhalten beim Erhitzen

BEOBACHTUNGEN BITTE NOTIEREN.

Beobachtung 3:
- Probe 1: Der Stoff zersetzt sich.
- Probe 2: Der Stoff schmilzt unter lebhafter Abgabe des Kristall-Wasser. Letzteres verdampft.
- Probe 3: Das in Spuren eingeschlossenen Wasser verdampft und sprengt dabei die Kristalle.

Entsorgung:

Mögliche Variationen:
- Die sehr geschmacksintensive Zitronensäure kann durch kristallines Vitamin C ersetzt werden.
- Fachübergreifend zur Biologie besteht die Möglichkeit, parallel mit diesem Versuch die Geschmackszonen der Zunge zu ermitteln. Im Partner-Versuch geben Lernende den Partner mittels angefeuchteten Watte-Stäbchen die Substanzen auf die verschiedenen Zonen der Zunge.

Bemerkung:
Bedingung für das Probieren von „Chemikalien“:

2.11 Flüssiger Sauerstoff aus Luft D!

Zeitbedarf: 10 Minuten, Lehrende, 1
Kompetenz/Ziel:
F: Luft ist ein Gas-Gemisch; Sauerstoff siedet höher als Stickstoff

Material:
- Brenner
- Feuerzeug
- Tiegelzange
- Stativ, Muffe, Klammer
- Kork-Stopfen, d~ 30 mm

Chemikalien:
- Stickstoff (flüssig) ca. 500 mL

Durchführung:
Die Getränke-Dose wird im Abstand von ca. 10 cm vom Boden schräg ins Stativ eingespannt, dann zu ca. 1/3 mit flüssigem Stickstoff befüllt.

Der Kork-Stopfen wird, gehalten mit der Tiegelzange, an der schmalen Seite über dem Brenner zum Glimmen gebracht, dann unter die Kante der Getränke-Dose gestellt.

Beobachtung:
An der tiefsten Stelle der Dosen-Kante bilden sich Flüssigkeitstropfen. Wenn sie auf eine glimmende Stelle des Korkens fallen, entstehen kurzzeitig Flammen bzw. die Stelle glüht auf.

Deutung:
Bei der Flüssigkeit handelt es sich um Sauerstoff. Der flüssige Stickstoff in der Dose ist so kalt, dass an der Gefäßwand Sauerstoff aus der Luft kondensieren kann. Er tropft herunter und lässt den glimmenden Kork aufflammen.

Entsorgung:
Kork mit Wasser löschen. Der Stopfen kann wiederverwendet werden.

Quelle:
unbekannt

Diskussion:
Um welchen Feststoff handelt es sich beim weißen Belag an der kalten Dose? Zwei Verbindungen kommen in Frage. Wie könnt man die Verbindungen unterscheiden?
3. Stoffeigenschaften / Termin: 12.05.2020

3.1 Ein Versuch als Methoden-Baustein: Dichte

Lehrziele:
Dichte als Größe; Dicht-Werte aus dem Alltag; Inhaltsstoffe von Nahrungsmitteln (Cola)

Vorkenntnisse:
Masse- und Volumen-Begriff

Vorbereitung:
Folie mit dem Text (ggf. mit dem Experiment) fertigen. Material für Experiment „Demonstration der Dichte-Unterschiede“ vorbereiten, ggf. auch Experimente zur Dichte-Messung.

Einsatz im Unterricht:
Sozial-Form: Klassen-Verband
Folge-Experimente: Partner- oder Gruppen-Arbeit (2-4 Lernende).

Material:
Dieses Material besteht aus 1 Datei:
- 1 Seite Lehrer-Information
- 1 Folien-Vorlage Dialog
- 1 Folien-Vorlage Versuchsbilder

Durchführung:
Siehe: Einsatz im Unterricht

Dauer:
5-10 Minuten, je nach Präsentationsform des Experimentes

Besondere Hinweise:
- Als Erfolgskontrolle bietet sich das Experiment um Cola Zero erweitert an: was kann man aus dem Vergleich schließen?
Hey, Julia! Ich glaub ich kann mich bei „Wetten, dass“ bewerben!
Wieso denn das?
Ich hab am Samstag auf der Party echt was cooles entdeckt: Ich kann auch im Dunklen Cola von Cola light unterscheiden!
Is’ doch easy, das kann ich auch, schmeckt doch total verschieden.
Quatsch, ich mein doch ohne die Cola-Dosen auf zu machen. Wenn die Dosen in einer Wanne mit Wasser liegen, schwimmen die Cola-light-Dosen und die Cola-Dosen gehen unter!
Echt! Und woran liegt das?
Ja, woran liegt das? Keine Ahnung?

Das Experiment

Zwei Gründe, warum Cola light „light“ ist
3.2 Bestimmung der Dichte unregelmäßiger Körper D!

Zeitbedarf: 10 Minuten, Lernende, n, a
Kompetenz/Ziel:
F: Dichte-Begriff und Dichte-Einheit (abgeleitet)

Material:
- Mess-Zylinder, 100 mL
- Waage

Chemikalien:
- Spitzer (ohne Messer; Magnesium)
- Kupfer-Stück
- Aluminium-Stück
- Marmor-Stück

Durchführung:

Beobachtung:
Die Masse des Stückes beträgt: \(m = X,xx \text{ g} \)

Der Flüssigkeitsspiegel steigt um \(V = X \text{ mL}=cm^3 \)

Deutung:
Der Anstieg des Flüssigkeitsvolumens entspricht dem Volumen des Metall-Stückes. Auswertung:

\[
d = \frac{m}{V} = \frac{X,xx \text{ g}}{X \text{ cm}^3} = X,xx \text{ g/cm}^3
\]

Erfahrungswerte früherer Durchführungen:
\(d_{(\text{Spitzer/Al})} = 3,3\text{g/cm}^3 \)
\(d_{(\text{Mg})} = 1,8\text{g/cm}^3 \) (Lit.: 1,74g/cm³)
\(d_{(\text{Cu})} = 8,9\text{g/cm}^3 \) (Lit.: 8,94g/cm³)
\(d_{(\text{Marmor})} = 2,6\text{g/cm}^3 \) (Lit.: 2,6-2,8g/cm³)

Quelle:
Praktikumsskript P. Pfeifer (1993)

Diskussion:
Vergleich zur Volumen-Bestimmung bei regelmäßigen (berechenbaren) Körpern. Archimedes und die (echte?) Krone des Königs. Einschränkung für die Krone?

WWW:
- http://www.heurekaheureka.com/index/index.html
3.3 Bestimmung der Dichte regelmäßiger Körper

Z **Zeitbedarf:** 15 Minuten, Lernende

K **Kompetenz/Ziel:**
F, E: Dichte-Begriff, Dichte-Bestimmung verschiedener Werkstoffe

M **Material:**
- Waage

C **Chemikalien:**
Würfel von je 1 cm³
- Kupfer
- Plexiglas
- Messing
- Aluminium
- Stahl

D **Durchführung:**
Das Gewicht der Würfel wird geschätzt und notiert. Dann werden die verschiedenen Würfel auf einer Balken-Waage durch Auflegen von g- und mg-Gewichten ausgewogen. Die Ergebnisse werden in einer Tabelle festgehalten und untereinander verglichen.

Beobachtung:

<table>
<thead>
<tr>
<th>Material</th>
<th>Masse (g)</th>
<th>Masse (Erfahrung)</th>
<th>Dichte (Lit.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kupfer</td>
<td>8,8 g</td>
<td></td>
<td>8,9 g/cm³</td>
</tr>
<tr>
<td>Kunststoff</td>
<td>1,12 g</td>
<td></td>
<td>0,9-0,96 g/cm³</td>
</tr>
<tr>
<td>Aluminium</td>
<td>2,75 g</td>
<td></td>
<td>2,7 g/cm³</td>
</tr>
<tr>
<td>Messing</td>
<td>8,25 g</td>
<td></td>
<td>~7-8 g/cm³</td>
</tr>
<tr>
<td>Stahl/Eisen</td>
<td>5,72 g</td>
<td></td>
<td>7,7 g/cm³</td>
</tr>
</tbody>
</table>

Auswertung:

\[
d = \frac{m}{V} = \frac{X,xx \text{ g}}{X \text{ cm}^3} = X,xx \text{ g/cm}^3
\]

Q **Quelle:**
Allgemeingut

H **Hintergrund:**
Wichtig ist das Zu- und Überordnen der Werkstoffe:
Metalle: Kupfer, Aluminium, Messing, Stahl
andere Werkstoffe: Kunststoff (Plexiglas)
Aluminium und Stahl sind beide silbrig und nur durch ihre Dichte zu unterscheiden.
Buntmetalle: Messing und Kupfer
Plexiglas könnte man leicht mit normalem Glas verwechseln. Glas hat eine höhere dichte (2-3 g/cm³). Außerdem müsste es bei Schlag zerspringen, was Plexiglas nicht macht (wird hier nicht ausprobiert!).
Metalle haben bei gleichem Volumen unterschiedliches Gewicht.
3.4 Bestimmung der Dichte von Cola und Cola light

Zeitbedarf: 25 Minuten, Lernende

Kompetenz/Ziel:
- **F:** Ermittlung der Dichte von Lösungen
- **E:** Experimentelle Unterscheidung verschiedener Getränkesorten

Vorbereitung:
Je Gruppe 100 mL der beiden Cola-Sorten genau abmessen und ca. 15 Minuten lang auf 80°C erhitzen, um das Kohlendioxid vollständig auszutreiben. Abkühlen lassen und bei ca. 20°C das verdampfte Wasser-Volumen wieder mit VE-Wasser ergänzen. Für die Spindel-Messung hängt das benötigte Volumen von der zur Verfügung stehenden Spindel-Länge ab.

Material:
- Brenner, Feuerzeug
- Dreifuß, Keramik-Drahtnetz
- Stativ, Muffe, Klammer
- Becherglas, 250 mL
- Mess-Zylinder, 100 mL
- Thermometer, T= 100°C
- Aräometer <1,1 g/cm³ (Dichte-Spindel)
- Stand-Zylinder, 500 mL
- Waage
- VE-Wasser

Chemikalien:
- Coca-Cola
- Coca-Cola light

Durchführung 1: (Aräometer)
Der Zylinder sollte in seiner Höhe dem Aräometer angepasst sein. Von den beiden Cola-Sorten wird mittels Aräometer die Dichte gemessen.

Durchführung 2: (über m und V)
Der Messzylinder 100 mL wird leer genau abgewogen:
\[m_{Mz}=X_{xx} \text{ g} \]
Der Messzylinder wird mit Cola genau abgewogen:
\[m_{Mcc}=X_{xx} \text{ g} \]
Messzylinder spülen und im Trockenschrank trocknen, dann Prozedur für Cola light wiederholen:
\[m_{Mz}=X_{xx} \text{ g} \]
\[m_{Mcl}=X_{xx} \text{ g} \]

Entsorgung: E1

Quelle: Didaktik der Chemie, Universität Bayreuth

Hintergrund:
Literatur: \(\text{d(Cola)} = 1,0389 \text{ g/cm³} \), \(\text{d(Cola light)} = 0,890 \text{ g/cm³} \)
Literatur: \(\text{d(Wasser)} \) bei 20°C: 0,9982 \text{ g/cm³}

Zusammensetzung Cola:
- \(\text{w(H}_2\text{O)} = 88\% \)
- \(\text{w(Zucker)} = 10,6\% \)
- \(\text{w(Zitronensäure)} = 0,3\% \)
- \(\text{w(H}_3\text{PO}_4) = 0,06\% \)
- \(\text{w(Coffein)} = 0,02\% \)
- \(\text{w(Aromen)} = 0,018\% \)

Geheimformel „7X“ (Aromastoff-Mischung ätherischer Öle von Limone, Orange, Muskat, Zimt, Neroli, Koriander, Alkohol), E150 (Zuckercouleur)

WWW: Den Selbstbau einer Dichte-Spindel beschreibt www.micrecol.de
3.5 Siedepunkt-Bestimmung von destilliertem Wasser und Kochsalz-Lösung

Zeitbedarf: 20 Minuten, Lernende, n

Kompetenz/Ziel:
- **F:** Einfache Ermittlung der Siede-Temperatur, Verdampfungswärme; Siedepunkt-Erhöhung
- **E:** Abhängigkeit der Siede-Temperatur vom Außendruck; Teilchen-Modell erklärt die Veränderung des Dampf-Drucks
- **K:** Siede-Diagramm von Wasser

Material:
- Drei-Bein
- Draht-Netz
- Brenner, Feuerzeug
- Stativ, Muffe, Klammer
- Thermometer
- Becherglas, 250 mL
- Siede-Steinchen
- ggf. Barometer
- Stoppuhr
- Löffelspatel

Chemikalien:
- VE-Wasser
- Natriumchlorid
 Kochsalz
 CAS-Nr.: 7647-14-

Frage: Wie heiß kann Wasser werden?

Durchführung 1:
In das Becherglas ca. 100 mL VE-Wasser füllen, 3 Siede-Steinchen zugeben und Thermometer so befestigen, dass der Fühlerkopf ganz eintaucht, aber den Boden nicht berührt. Wasser bis etwa 85°C erhitzen, dann 5 Minuten lang alle 30 Sekunden die Temperatur ablesen.

Tragen Sie die Temperaturen in die Werte-Tabelle unten ein.

Beobachtung 1:
Wasser siedet bei T<100°C (Erf.: 98°C/1041 hPa, 99,5°C/1052 hPa)

Auswertung 1:

<table>
<thead>
<tr>
<th>t [Min.]</th>
<th>0</th>
<th>0,5</th>
<th>1</th>
<th>1,5</th>
<th>2</th>
<th>2,5</th>
<th>3</th>
<th>3,5</th>
<th>4</th>
<th>4,5</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>T [°C]</td>
<td></td>
</tr>
</tbody>
</table>

Zeichnen Sie auf kariertem Papier ein Siede-Diagramm für die Werte aus der Tabelle

Deutung 1:
Der Luft-Druck beträgt heute im Praktikumsraum _______ hPa=mbar
Erklärt das die Abweichung von 100°C?

Durchführung 2:
Wasser aus dem Versuch „Siedepunkt-Bestimmung von Wasser“ wieder auf 100 mL auffüllen, ggf. 3 Siede-Steinchen zugeben, 3 Löffel Kochsalz (oder, bei mehreren Gruppen, nach Maßgabe des Praktikumsleiters) auflösen und das Thermometer so einhängen, dass der Fühlerkopf ganz eintaucht aber den Boden nicht berührt. Wasser bis etwa 85°C erhitzen, dann alle 30 Sekunden ca. 5 Minuten lang Temperatur ablesen. Werte-Tabelle anlegen und eintragen (max. 10 Werte).

Beobachtung 2:
Nicht reines Wasser siedet bei T>100°C (2 Löffel NaCl: 101,5°C; 7 Löffel: 106°C)
Auswertung 2:

<table>
<thead>
<tr>
<th>t[Min.]</th>
<th>0</th>
<th>0,5</th>
<th>1</th>
<th>1,5</th>
<th>2</th>
<th>2,5</th>
<th>3</th>
<th>3,5</th>
<th>4</th>
<th>4,5</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>T[°C]</td>
<td></td>
</tr>
</tbody>
</table>

Zeichnen Sie die Kurve zu der des VE-Wassers mit ein.

Deutung 2:
Kochsalz ist als Wasser-Verunreinigung anzusehen und erhöht den Siede-Punkt.

Entsorgung: Ausguss

Quelle:
Allgemeingut

Diskussion:
Abhängigkeit des Siede-Punktes vom Luft-Druck. Grund? Teilchen-Modell
Wechselwirkung der Teilchen Lösestoff – Lösemittel.
Teilchen-Gefüge im flüssigen Aggregat-Zustand.

WWW:
http://www.mondorf-wetter.de/wetter/tempscal.htm
http://lexikon.wasser.de/
https://www.hausfrauenseite.de/haushalt/salz.html
3.6 Elektrische Leitfähigkeit

Zeitbedarf: 10 Minuten. Lernende

Kompetenz/Ziel:
F: Elektrische Leitfähigkeit: Kenneigenschaft von Stoffen, Leitfähigkeitsmessung
E: „Träges Wissen“: Erkennen isolierender Schichten

Vorbereitung:
ggf. mit Skizze zum Experimentalaufbau

Material:
- Glas-Stab
- Lampe ca. 3,5-6 V in Fassung
- 2 Krokodil-Klemmen
- 2 Kabel, rot
- 2 Kabel, blau
- Multimeter
- Labor-Netzgerät

Chemikalien:
- Natriumchlorid-Lösung (aus Versuch Siedepunkt)
- Kupfer-Draht
- Aluminium-Stück
- Eisen-Nagel
- Magnesium-Band CAS-Nr.: 7439-95-4
- Bleistift
- Holz-Stäbchen

Durchführung:
- Strom-Kreis nach Skizze aufbauen.
- Netz-Gerät: 0-Stellung
- Multimeter: höchsten Bereich verwenden (ggf. gesonderter Anschluss 10 oder 20 A)
- Spannung des Netz-Teils darf maximal die auf der Lampe angegebene betragen
- Gleich- oder Wechsel-Spannung ist egal, Mess-Gerät aber auf die Spannungsart des Netz-Gerätes einstellen.
- Die verschiedenen Materialien als Widerstand R testen und die Spannung langsam bis zur Lampen-Spannung erhöhen

Beobachtung:
Folgende Stoffe sind Isolatoren:
Notiere im Laborbuch.
Folgende Stoffe sind Leiter:
Notiere im Laborbuch.

Quelle: Allgemeingut / erweitert durch Wagner

Diskussion:
Kupfer-Draht, Aluminium-Profil, Eisen-Nagel
3.7 Eigenschaften von Ionenverbindungen (Salzen)

Zeitbedarf: ca. 10 Minuten, Lernende

Kompetenz/Ziel:
F = Leitfähigkeit von Salzlösungen
E = Leitfähigkeit als Physikalische Stoffeigenschaft

Material:
- Spatel
- 3 Experimentierkabel mit Krokodilklemmen
- 1 LED
- 9V Blockbatterie
- Zellkulturplatte 6 Vertiefungen
- 2 Stecknadeln oder 2 Kanülen
- VE-Wasser

Chemikalien:
- Natriumchlorid
 CAS-Nr. 7647-14-15

Durchführung 1:
In zwei der Vertiefungen der Platte jeweils eine großzügige Spatelspitze Kochsalz geben. Das Salz in einer der beiden Vertiefungen durch Zugabe von VE-Wasser und Umrühren mit dem Spatel lösen. In eine dritte Vertiefung nur VE-Wasser geben. Den Stromkreis entsprechend der Skizze aufbauen:

BEACHTEN: Die LED hat zwei unterschiedlich lange Drahtenden. Der Plus-Pol der Batterie wird mit dem längeren Drahtstück verbunden, damit kann die Lebensdauer der LED verlängert werden.

Nachdem die Krokodilklemmen an die Batterie geklemmt sind, kann der Stromkreis auf Rich
tigkeit hin überprüft werden, indem beide Stecknadeln / Kanülen (=Elektroden) kurzzeitig (!) aneinandergehalten werden und das LED dabei leuchtet. Anschließend werden die Elektroden nacheinander in die Vertiefungen des festen Salzes, des VE-Wassers und der Salzlösung getaucht, um zu überprüfen, ob diese Stoffe den elektrischen Strom leiten. Die Elektroden dürfen sich dabei nicht berühren.

Beobachtung 1:
Deutung 1:

Diskussion:
Der Versuchsaufbau kann auch für andere Experimente, z.B. 7.2 zur Untersuchung der Leitfähigkeit von Lösungen verwendet werden.

Entsorgung:
Auszuss.

Quelle:
Seminarmaterial von Waltraud Habelitz-Tkotz
3.8 Iod-Schmelze

Zeitbedarf:
5 Minuten, Lehrende

Kompetenz/Ziel:
E: Der Aggregat-Zustand hängt ab von Temperatur und Druck

Vorbereitung:
Die Ampulle wurde aus schwarschmelzbarem Glas geformt, das Iod beim zu schmelzen in flüssigem Stickstoff gekühlt. Je nach Größe der Ampulle und Dauer des Schmelz-Vorgangs kann auch mit Eis-Wasser, Eis-Wasser mit Kochsalz oder Trocken-Eis gekühlt werden.

Material:
- Magnetrührer, heizbar
- Tiegel-Zange

Chemikalien:
- 5 g Iod in einer verschlossenen Glas-Ampulle
 - CAS-Nr.: 7553-56-2
 - H312+H332, H315, H319, H335, H372, H400
 - P273, P302+P352, P305+P351+P338, P314

Durchführung:
Das Iod in der Glas-Ampulle mit Hilfe der Tiegel-Zange auf der Heizplatte erhitzen bis die Kristalle schmelzen.

Beobachtung:
Zunächst bildet sich violetter Dampf. Anschließend schmilzt das Iod-Pulver, wie man beim Kippen der Ampulle gut sehen kann.

Auswertung:

Im offenen Gefäß ist das bei sehr schnellem Erhitzen auf 112,9°C möglich, im geschlossenen Gefäß aber kann der Iod-Dampf nicht entweichen und der nötige Druck wird in jedem Fall erreicht.

Entsorgung:
Die Ampulle kann wiederverwendet werden

Quelle:
Journal of Chemical Education, Jahrgang 2005, Heft 2, Seite 241, verändert

Didaktischer Hinweis:
Der Versuch ist auch mit einem schwarschmelzbaren Reagenzglas mit Gummi-Stopfen möglich. Allerdings sollte der mit Iod kontaminierte Stopfen anschließend nicht mehr verwendet werden.

Auch können die Iod-Reste meist kaum aus dem Reagenzglas entfernt werden und müssen deshalb zur Entsorgung mit Natriumthiosulfat-Lösung behandelt und anschließend mit Natriumhydrogencarbonat neutralisiert werden.
3.9 Ein „Kaputtmach-Versuch“ D!

Zeitbedarf: 10 Minuten, Lehrender, 1

Kompetenz/Ziel:
E: Große Volumen-Unterschiede zwischen gleichen Massen flüssiger und gasförmiger Stoffe. Wirkung des Luftdrucks.

Material:
- Brenner, Feuerzeug
- Tiegel-Zange
- pneumatische Wanne
- leere Getränke-Dose

Durchführung:

Beobachtung:
Die Dose wird schlagartig stark verformt.

Deutung:
Durch das Abkühlen kondensiert der Wasser-Dampf in der Dose. Dadurch verringert sich das Volumen von den ca. 330 mL sehr schnell auf fast 0. Deshalb entsteht ein starker Unter-Druck. Wegen der Trägheit des Wassers (relativ hohe Masse, die erst beschleunigt werden muss) kann dieses den Unter-Druck nicht schnell genug ausgleichen, so dass der Luft-Druck die dünne Wand verformen kann.

Entsorgung:
E3

Quelle:
Physik

Diskussion:
Von der Heftigkeit überrascht? Grenzen des Erfahrungsbereiches mit einer „Alltags-Kraft“. Berechnen Sie, wieviel Wasser man mindestens einfüllen muss, um die Dose (V= 0,5 L) mit Dampf zu füllen.
3.10 Experimentierkästen

Kompetenz/Ziel:
für Studierende: Kenntnis der Marktsituation, Lernende

Material:
Kosmos: Chemie C300, Franckh-Kosmos Verlags-GmbH, Stuttgart, Art.-Nr.: 645 014, max. 160 €; Inhalt

Boxen Luft I + II, Cornelsen Experimenta, Berlin, Art.-Nr.: 0031705, ca. 570€

Durchführung:
Verschaffen Sie sich eine Übersicht über:
- den Inhalt der Kästen (Material und Chemikalien)
- die Qualität der Anleitungen
- die Interessantheit der Experimente
- die fachliche Korrektheit
- den didaktischen Sinn
- die Angemessenheit der Altersempfehlungen

Quelle:
- Franckh-Kosmos Verlags-GmbH, Pfizerstr. 5-7, 70184 Stuttgart
- Cornelsen Experimenta, Holzhauser Str. 76, 13509 Berlin

WWW:
- https://www.kosmos.de/experimentierkaesten/
3.11 Es geht um die Wurst

Zeitbedarf: 25 Minuten, Lernende, 1

Kompetenz/Ziel:
F: Osmose: Diffusion durch eine Membran
E: Osmotischer Druck durch Konzentrationsausgleich

Material:
- 2 Töpfe, ca. 1000 mL
- Haushalts-Gummi d- Topf
- Becherglas, 400 mL (zum Abmessen)
- Schere
- Schieb-Lehre
- Stopp-Uhr

Chemikalien:
- 2 Weißwürste, Wiener, o. ä.

Aufgabe:
Vorhersage, welche Anordnung die Wurst schneller heiß und knackig werden lässt.

Durchführung:
Beide Magnetrührer auf ca. 150°C vorheizen.
Durchmesser der Würste bestimmen:
\[d_0 = X_{xx} \text{ mm} \]

In Topf 1 ca. 700 mL Wasser, mit Alu-Folie abgedeckt, zum Kochen bringen (10-15 Minuten).
In Topf 2 ca. 100 mL Wasser geben, das Metall-Gestell hineinstellen, Wurst darauflegen,
dass sie nicht im Wasser liegt und mit Frischhalte-Folie (nicht zu festspannen) abdecken, mit
Gummi-Ring fixieren. Ggf. kleines Loch einschneiden.
Wenn das Wasser in Topf 1 kocht, Topf 2 auf den zweiten Magnetrührer stellen, warten bis
hiere das Wasser kocht (4 Minuten).
Jetzt erst Magnetrührer 1 ausschalten und Wurst ins Wasser geben. Nach 3 Minuten beide
Würste herausnehmen und erneut die Durchmesser bestimmen:
\[d_1 = X_{xx} \text{ mm} \]

Beobachtung:
Die Wurst aus dem Dampf ist größer, „knackiger“. Je mehr Wasser, desto langsamer gart die
Wurst.

Deutung:
Durch die semipermeable Wurst-Haut diffundiert entsprechend dem Konzentrationsgradienten
Wasser ins Innere, das durch seinen osmotischen Druck die Wurst knackig werden (und bei
unsachgemäßer Handhabung platzen) lässt und gleichzeitig Wärme ins Wurst-Innere transportiert.
Dampf diffundiert wegen der höheren Teilchen-Beweglichkeit schneller als flüssiges Wasser.
 Weniger Wasser siedet schneller, entsprechend schneller ist die Wurst gar.

Entsorgung:
Bio-Dynamisch durch den Kurs-Leiter. Die Kurs-Teilnehmer geben ihren Senf dazu, außerdem
eine Laugen-Brezel und 500 mL Weißbier.

Quelle: Didaktik der Chemie, Universität Bayreuth

Diskussion:
Größen-Ordnung des osmotischen Drucks (Pflanzen sprengen Asphalt oder Beton). Grund für
schuppelige Haut beim Baden, Auswirkung von Bade-Salz auf diesen Vorgang
4. Die chemische Reaktion / Termin: 19.05.2020

4.1 Katalytische Zersetzung von Wasserstoffperoxid

Zeitbedarf: 3 Minuten, Lernende, n
Kompetenz/Ziel:
F: Platin als Katalysator, Analyse als Reaktionstyp

Material:
- Reagenzglas, d= 18 mm
- Platin-Draht-Spirale

Chemikalien:
- Wasserstoffperoxid-Lösung
 \(w= 10 \% \)
 \(\text{CAS-Nr.: 7722-84-1} \)

Gefahr

H272, H318
P210, P280, P305+P351+P338

Durchführung:
Ins Reagenzglas ca. 10 mL Wasserstoffperoxid-Lösung geben, dann Platin-Draht einhängen.

Beobachtung:
Am Platin-Draht entstehen Gas-Blasen.

Deutung:

Entsorgung:
E1

Quelle:

Diskussion:
Chemische Gleichung.
Als Projektionsversuch auf dem Overhead-Projektor sinnvoll?
4.2 Zersetzung von Wasserstoffperoxid

Zeitbedarf: 15 Minuten (Wartezeit: 10 Minuten), Lehrende, n
Kompetenz/Ziel:
F: Katalyse durch Enzyme
E: Volumen-Zunahme bei Gas-Entwicklung

Material:
- Becherglas, 600 mL
- Becherglas, 100 mL
- Magnetrührer, heizbar
- Magnetrühr-Stäbchen
- Rührstäbchen-Entferner

Chemikalien:
- Spülmittel
- Wasserstoffperoxid-Lösung
 w= 10 %
 CAS-Nr.: 7722-84-1
- Glycerin
 CAS-Nr.: 56-81-5
- Gelatine
 CAS-Nr.: 9000-70-8
- Trocken-Hefe
- Thermometer, <100°C
- Schale zum Unterstellen
- Waage, 0,0 g
- Messzyllinder, 250 mL
- Plastik-Flasche, <1 L

Durchführung:
200 mL Wasserstoffperoxid-Lösung auf ca. 40°C erwärmen, unter Rühren 8 g Gelatine vollständig auflösen, Lösung in die Flasche geben.
Im 100 mL Becherglas 5 g Hefe mit 10 mL Glycerin und 50 mL Spülmittel aufschwemmen, ca. 10 Minuten mischen, zu der Wasserstoffperoxid-Lösung in die Flasche geben. Kräftig schütteln.

Beobachtung:
Es bildet sich ein weißer fester Schaum, der für mehrere Minuten aus der Flasche herausquillt (linkes Bild).
Der Schaum bleibt noch mehrere Stunden bestehen (rechtes Bild).

Deutung:
In der Hefe befindet sich Katalase.
Diese katalysiert die Zersetzung von Wasserstoffperoxid zu Wasser und Sauerstoff

\[2H_2O_2 \rightarrow 2H_2O + O_2 \]

Entsorgung:
Ausguss, E1

Quelle:
Journal of Chemical Education, Jahrgang 2005, Heft 6, Seite 855

Hintergrund:
Gelatine und Glycerin lassen den Schaum stabiler und fester werden:
Optimierung auf möglichst deutliche Gas-Bildung.
Die Reaktion und Schaum-Bildung würden aber auch ohne diese Substanzen stattfinden.
4.3 Lösen von Kaliumhydroxid in Wasser

Zeitbedarf: 3 Minuten, Lehrende, n
Kompetenz/Ziel:
F: Löse-Vorgang als exotherme Reaktion, Lösungsenthalpie
E: Sicherheit beim Herstellen von Laugen

Material:
- Reagenzglas, d= 18 mm
- Reagenzglas-Gestell
- Stopfen
- Thermometer
- Pulver-Spatel
- Pinzette

Chemikalien:
- Kaliumhydroxid
 CAS-Nr.: 1310-58-3
 Gefahr
 H290, H302, H314
 P260, P280, P301+P330+P331, P305+P351+P338, P308+P310

Durchführung:
Ca. 3 mL Wasser in das Reagenzglas füllen, Temperatur messen.
Dann 3-5 Plätzchen Kaliumhydroxid zugeben und schütteln.
Nach 2 Minuten erneut Temperatur messen.

Beobachtung:
Die Temperatur steigt von ca. 20°C auf ca. 50°C an

Deutung:
Die Lösungsenthalpie (Lösungswärme) von Kaliumhydroxid ist kleiner als Null
\(\text{d}H_{L}(\text{KOH})<0 \)

\[
\text{KOH}^{\text{s}} + \text{aq} \rightarrow \text{K}^{+\text{aq}} + \text{OH}^{-\text{aq}}
\]

Entsorgung:
E8, B1
Quelle:
Allgemeingut

Diskussion:
Haare/Hornhaut und konzentrierte Laugen.
Vorgehensweise beim Lösen und Verdünnen konzentrierter Säuren und Laugen
4.4 Bildung von Eisensulfid (wird nicht durchgeführt)

Zeitbedarf: 5 Minuten

Kompetenz/Ziel:
- **F:** Metalle und Schwefel reagieren miteinander zu Sulfiden
- **E:** Veränderte Eigenschaften zeigen das Vorhandensein neuer Stoffe aus neuen Teilchen
- **B:** Beispiel für einen Versuch, der nicht zeigt, was er soll („Unversuch“)

Material:
- Drei-Bein
- Keramik-Drahtnetz
- Brenner, Feuerzeug
- Mörser, Pistill
- Spatel
- Filter-Papier

Chemikalien:
- 16,8 g **Eisen**-Pulver
 - CAS-Nr.: 7439-89-6
 - Achtung: H228, H251, P210, P260, P370+P378
- 9,6 g **Schwefel**-Pulver
 - CAS-Nr.: 7704-34-9
 - Achtung: H315
- Reagenzglas, d= 18 mm
- Reagenzglas-Gestell
- Magnet (stark)
- Lupe
- handelsübliches **Eisensulfid**
 - CAS-Nr.: 1317-37-9
 - Gefahr: H400, P273

Durchführung 1:
Die angegebenen Substanz-Mengen (Mol-Verhältnis 1:1) werden im Mörser fein zerrieben und vermischt.
Anschließend den Magneten in das Filter-Papier packen und damit einmal umrühren. Beobachtung?
Reagenzglas zur Hälfte mit Wasser füllen, eine Spatel-Spitze des Gemisches zugeben. Beobachtung?
Untersuchung mit der Lupe. Beobachtung?

Beobachtung 1:
Es handelt sich um ein Gemisch.
Beweis: Eisen kann mit einem Magneten wieder herausgeholt werden, Schwefel durch Aufschwimmen im Wasser.

Durchführung 2:
Den Rest der Substanz auf dem Keramik-Drahtnetz in einer nicht zu dünnen Bahn aufbringen und mit dem Brenner anzünden. Nach dem Erkalten des Produktes:
- im Mörser zerkleinern und
- mit dem Magneten einmal umrühren. Beobachtung?
- Reagenzglas zur Hälfte mit Wasser füllen, eine Spatel-Spitze des Produktes zugeben. Beobachtung?
- Untersuchung mit der Lupe. Beobachtung?
Beobachtung 2:
Vermutlich ein Reinstoff.

Deutung:
Durch eine chemische Reaktion haben sich Schwefel und Eisen zu einem neuen Stoff verbunden:

\[
8 \text{Fe} + \text{S}_8 \rightarrow 8 \text{FeS} ; \quad \Delta H < 0
\]
oder

\[
\text{Fe} + \text{S} \rightarrow \text{FeS} ; \quad \Delta H < 0
\]

Entsorgung:
E8, B2

Durchführung 3:
Handelsübliches Eisensulfid mit dem Magneten berühren

Beobachtung 3:
Der Magnet zieht Eisensulfid an

Quelle:

Diskussion:
Wahrscheinliche, vereinfachte Reaktionsgleichung

Hintergrund:
Übliche Ziele:
• Es entsteht ein neuer Stoff
• Beweis: der neue Stoff hat keine magnetischen Eigenschaften mehr

Didaktischer Hinweis:
Ziel 1) wird erreicht: aus dem gelben Stoff Schwefel und dem grauen Stoff Eisen wird ein dunkelgrauer Stoff Eisensulfid.
Ersatz: siehe „Bildung von Zinksulfid“.
Wir empfehlen durchaus die Variante, in der die Reaktion in einem Reagenzglas durchgeführt wird. Das Reagenzglas muss zwar zur Gewinnung des Produktes zerstört werden, dafür bleibt aber der oft einzige Keramik-Drahtnetz-Satz für andere Experimente sauber.

WWW:
http://www.fh-niederrhein.de/~realkerp/reaktion_eisen_schwefel.htm vom 04.06.2007; Bilder zum Versuch für Lernende.
4.5 Bildung von Zinksulfid B/D!

Zeitbedarf: 5 Minuten, Lehrende
Kompetenz/Ziel:
K: Energie-Profil erstellen

Material:
- Brenner, Feuerzeug
- Drei-Bein
- Keramik-Drahtnetz (alt)
- 2 Bechergläser, 100 mL
- Glas-Stab
- Mörser, Pistill
- Trichter
- Pulver-Spatel
- Erlenmeyer-Kolben, 250 mL

Chemikalien:
- 13,1 g Zink-Pulver
 CAS-Nr.: 7440-66-6
 Gefahr
 H250, H260, H410
 P222, P210, P231+P232, P280, P370+P378, P273
- 6,4 g Schwefel-Pulver
 CAS-Nr.: 7704-34-9
 Achtung
 H315
 P keine

Durchführung 1:
- Untersuchung einer Portion mit der Lupe auf Papier. Beobachtung?
- Becherglas zu 2/3 mit Wasser füllen, einen Spatel der Substanz vorsichtig aufstreuen und mit dem Glas-Stab umrühren. Beobachtung?

Beobachtung 1:
Mit der Lupe werden gelbe und dunkle Körnchen sichtbar.
In Wasser bleibt gelbes Schwefel-Pulver auf der Oberfläche, dunkles Zink-Pulver sinkt ab.

Deutung 1:
Mit der Lupe wird sichtbar, dass es sich um ein Gemisch handelt.
Es lässt sich in Wasser wieder in Schwefel-Pulver und Zink-Pulver trennen.

Durchführung 2:
Den Rest der Substanz auf dem Keramik-Drahtnetz in einer nicht zu dünnen Bahn aufbringen.
Mit einer Lage Alu-Folie umgeben. Dann das Zink-Schwefel-Gemenge mit dem in der Brenner-Flamme glühend gemachten Draht entzünden.
Nach dem Erkalten des Produktes dieses im Mörser zerreiben.
- Untersuchung mit der Lupe. Beobachtung?
- Becherglas zu 2/3 mit Wasser füllen, einen Spatel des Produktes zugeben und mit dem Glas-Stab umrühren. Beobachtung?
Beobachtung 2:
Keine Einzel-Komponente erkennbar.
Das gelbliche Produkt sinkt ab.

Entsorgung:
Inhalt der beiden Bechergläser filtrieren.
Rückstand der Filtration: E8, B2
Wasser: E1

Quelle:

Diskussion:
Wahrscheinliche, vereinfachte Reaktionsgleichung?
Energie-Beteiligung?
Energie-Diagramm.

Didaktischer Hinweis:
Es gelten die gleichen Zielsetzungen wie bei Eisensulfid, das Produkt kann aber durch die (andere) weiß-gelbliche Farbe bzw. durch die gestiegene Dichte korrekt als „neu“ nachgewiesen werden.

WWW:
http://www.seilnacht.com/versuche/sulfid.html Beschreibung
http://www.chemieunterricht.de/dc2/tip/01_03.htm, mit weiteren Metall-Schwefel-Versuchen
http://www.chemieunterricht.de/dc2/vermisch/quantc.htm Einsatzmöglichkeit im Unterricht
4.6 Eine endotherme Reaktion

Zeitbedarf: 5 Minuten, Lernende, n

Kompetenz/Ziel:
E: auch endotherme Reaktionen können freiwillig ablaufen. Rolle der Entropie.
K: Energie-Profil erstellen

Material:
- Erlenmeyer-Kolben, 50 mL
- Glas-Stab
- Multimeter mit Thermofühler
- Bierfilz, nass
- Multimeter mit Thermofühler
- Bierfilz, nass

Chemikalien:
- *Bariumhydroxid-8-hydrat*
 CAS-Nr.: 12230-71-6
 Gefahr: H302, H314, H318
 P280, P305+P351+P338, P310

- *Ammoniumthiocyanat*
 CAS-Nr.: 1762-95-4
 Achtung: H302+H312+H332, H412, H318, EUH032

Durchführung:
Bierfilz mit Wasser tränken. Gleiche Mengen der Stoffe (ca. 10 g) als Fest-Substanz im Erlenmeyer-Kolben mischen. Temperatur messen. Geruch prüfen

Beobachtung:
Die Temperatur sinkt bis ca. -30°C. Der Erlenmeyer-Kolben friert am nassen Bierfilz fest.

Deutung:

Gleichung:
Notiere im Labor-Buch

Erstellen Sie ein Energie-Profil:

Entsorgung:
E8, B1

Quelle:

Diskussion:
Nicht mit dem Thermometer rühren. Es entstehen Bariumthiocyanat, Ammoniak, Wasser.
Formulieren Sie eine Gleichung.
Diskutieren Sie die Entropie-Stufen der Stoffe

WWW:
http://www.pc.chemie.uni-siegen.de/pci/versuche/v41-2.html
4.7 Zersetzung v. Wasser, Löslichkeit v. Sauerstoff D!

a) geschlossene Anleitung

Zeitbedarf: D1: 15 Minuten / D2: 15 Minuten

Kompetenz/Ziel:
F: Zusammensetzung von Wasser, Elektrolyse, Löslichkeit von Gasen in Wasser
E: Analysen: Spaltung von Verbindungen

Material:
- Hoffmann’scher Zersetzungsapparat mit 2 Platin-Elektroden
- Labor-Netzgerät
- 2 Kabel, blau + rot
- pneumatische Wanne
- Trichter
- Becherglas, 400 mL
- Stoppuhr

Chemikalien:
- Schwefelsäure (stark angesäuertes Wasser)
 \[w = 20\% \]
 CAS-Nr.: 7664-93-9
- Gefahr: H290, H314
 P280, P305+P351+P338, P310

Vorbereitung:
Die Apparatur wird durch Lehrende aufgebaut und befüllt.
Während des Befüllens darauf achten, dass der Flüssigkeitsspiegel in den Zersetzungsschenkeln auf der Markierung „0 mL“ zu stehen kommt (rechtzeitig Hähne schließen und vorsichtig auf „0“ stellen). Das Netz-Gerät bleibt ausgeschaltet, die Spannung wird auf etwa 10 V voreingestellt.

Durchführung 1: (Lernende)
Netz-Gerät einschalten und gleichzeitig Stoppuhr starten.
Nach 10 Minuten Netz-Gerät ausschalten, ca. 1 Minute warten, bis sich alle Gas-Blasen oben gesammelt haben.
Die Gas-Menge genau ablesen.
Flüssigkeitsspiegel vorsichtig wieder auf „0 mL“ einstellen

Beobachtung 1:
An beiden Elektroden entstehen Gas-Blasen.
Notiere im Labor-Buch
\[V_1 (Sauerstoff) = X, x mL \quad V_2 (Wasserstoff) = X, x mL \]

Aufgabe:
Nochmal wie Durchführung 1:
Welche Menge an Gasen erwartet man?

Durchführung 2: (Lernende)
Netz-Gerät einschalten und gleichzeitig Stoppuhr starten.
Nach 10 Minuten Netz-Gerät ausschalten, ca. 1 Minute warten, bis sich alle Gas-Blasen oben gesammelt haben.
Die Gas-Menge genau ablesen.

Beobachtung 2:
Notiere im Labor-Buch
\[V_3 \text{(Sauerstoff)} = X, x \text{ mL} \quad V_4 \text{(Wasserstoff)} = X, x \text{ mL} \]

Deutung:
Die Sauerstoff-Menge \(V_1 \) ist geringer als erwartet (weniger als \(\frac{1}{2} V_2 \)), die Menge \(V_3 \) liegt nahe an \(\frac{1}{2} V_4 \). Von der ersten Portion Sauerstoff muss ein Teil „verschwunden“ sein. Dieser Teil hat sich in Wasser gelöst.
Die Sauerstoff-Menge \(V_3 \) ist größer als \(V_1 \), obwohl an Spannung und Zeit nichts verändert wurde. Ein Teil des Sauerstoffs aus D1 muss ich in Wasser gelöst haben. Während D2 war das Wasser (weitgehend) gas-gesättigt.

Entsorgung:
Schwefelsäure wiederverwenden

Quelle:
In dieser Ziel-Setzung:
W. Wagner, Didaktik der Chemie, Universität Bayreuth, Mai 2004

Diskussion:
Welches Wasser ist besser geeignet: abgekochtes, destilliertes, angesäuertes oder Leitungs-wasser?
Mögliche (Mess)-Fehlerquellen?

Didaktischer Hinweis:
- Das Experiment eignet sich als Experiment für erfahrende Lernende oder als Demonstrationsversuch von Lehrenden in Zusammenhang mit Löslichkeit von Kohlenstoffdioxid in Wasser.
 Nachdem die sehr gute Löslichkeit von Kohlenstoffdioxid erfahren wurde, sollt dazu im Vergleich die mäßige Löslichkeit von Sauerstoff gegenübergestellt erden (die noch geringer Löslichkeit von Stickstoff ist nicht einfach darstellbar und liegt der Erfahrung Lernender nicht so nahe).
- Als Voraussetzung erfahren Lernende,
 - dass der Strom Wasser in Wasserstoff und Sauerstoff zerlegt
 - dass diese Gase getrennt in den Schenkeln des Apparates entstehen und
 - dass sie im Verhältnis \(H_2:O_2 = 2:1 \) entstehen müssten
b) Montessori-Variante

Zeitbedarf: D1: 15 Minuten / D2: 15 Minuten, Lernende, 1

Kompetenz/Ziel:
F: Zusammensetzung von Wasser, Elektrolyse, Löslichkeit von Gasen in Wasser
E: Analysen: Spaltung von Verbindungen

Material:
- Erfahrungskiste ek05 „Wir machen Wasser kaputt“

Durchführung 1:
Batterie anklemmen und gleichzeitig Stoppuhr starten. Nach 4 Minuten abklemmen und die Gas-Menge genau ablesen. Flüssigkeitsspiegel vorsichtig wieder auf „0 mL“ stellen.

Entsorgung:
Natriumcarbonat-Lösung wiederverwenden.

Quelle:

Diskussion:
Wieso verwendet man Natriumcarbonat-Lösung zur Wasser-Analyse? (ggf. im Experiment reines Wasser verwenden und vergleichen)

Hintergrund:

<table>
<thead>
<tr>
<th>T [°C]</th>
<th>V (Sauerstoff)</th>
<th>V (Wasserstoff)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0°C</td>
<td>4,9 mL</td>
<td></td>
</tr>
<tr>
<td>20°C</td>
<td>3,1 mL</td>
<td>2 mL</td>
</tr>
<tr>
<td>100°C</td>
<td>1,7 mL</td>
<td></td>
</tr>
</tbody>
</table>

Didaktischer Hinweis:
- Das Experiment eignet sich als Experiment für erfahrende Lernende oder als Demonstrationsversuch von Lehrenden in Zusammenhang mit Löslichkeit von Kohlenstoffdioxid in Wasser.
 Nachdem die sehr gute Löslichkeit von Kohlenstoffdioxid erfahren wurde, soll dazu im Vergleich die mäßige Löslichkeit von Sauerstoff gegenübergestellt erden (die noch geringer Löslichkeit von Stickstoff ist nicht einfach darstellbar und liegt der Erfahrung Lernender nicht so nahe).
- Als Voraussetzung erfahren Lernende,
 dass der Strom Wasser in Wasserstoff und Sauerstoff zerlegt
 dass diese Gase getrennt in den Schenkeln des Apparates entstehen und
 dass sie im Verhältnis $H_2:O_2 = 2:1$ entstehen müssten
c) **offene Variante D**

Zeitbedarf: D1: 15 Minuten / D2: 15 Minuten, Lernende

Kompetenz/Ziel:
F: Zusammensetzung von Wasser; Elektrolyse, Löslichkeit von Gasen in Wasser
E: Analysen: Spaltung von Verbindungen; Aufbau einer Elektrolyse-Apparatur

Material:
- 2 Spritzen, 10 mL (ohne Kolben mit eingeklebter Stahl-Elektrode)
- 2 Drei-Wege-Hähne (LUER) mit Kombi-Stopfen
- Spritze, 10 mL
- Kristallisierschale, d= 80 mm
- 2 Kabel mit Krocodil-Klemmen
- 9V-Block-Batterie
- Teelicht
- Feuerzeug
- Glimm-Span
- Reagenzglas, d= 7,5 mm
- Stopuhr

Chemikalien:
- Natriumcarbonat-Lösung gesättigt (w~ 20%)
 CAS-Nr.: 497-19-8

Vorbereitung:
21,8 g Natriumcarbonat wasserfrei in 100 mL Wasser lösen.

Durchführung:

Beobachtung:
An beiden Elektroden entstehen Gase. Man liest ab:
Notiere im Labor-Buch
\[V_1 \text{ (Sauerstoff)} = X, x \text{ mL} \]
\[V_2 \text{ (Wasserstoff)} = X, x \text{ mL} \]

Aufgabe:
Nochmal wie Durchführung 1:
Welche Menge an Gasen erwartet man?

Durchführung 2:
Beobachtung 2:
Notiere im Labor-Buch
\[V_3 \text{(Sauerstoff)} = X, x \text{ mL} \quad V_4 \text{(Wasserstoff)} = X, x \text{ mL} \]

Deutung:
- Die Gas-Volumina sind direkt proportional zur Elektolyse-Dauer
- In der einen Spritze sammelt sich im Unterschied zu Durchführung 1 nun genau doppelt so viel Gas wie in der anderen. \(V_1:V_2 = 2:1 \) (oder 1:2).

Durchführung 3:
Das größere Gas-Volumen leitet man oben aus dem Hahn in ein umgedrehtes Reagenzglas und führt die Knallgas-Probe durch.
Das kleinere Gas-Volumen entnimmt man mit der 3. Spritze und drückt es dann über einen bereits glimmenden Span.

Beobachtung 3:
Knallgas-Probe und Glimmspan-Probe.

Entsorgung:
Natriumcarbonat-Lösung wiederverwenden.

Quelle:
Nach Prof. Dr. Viktor Obendrauf, verändert

Diskussion:
Gründe für die Unterschiede der Ergebnisse in den Durchführungen 1 und 2;
Gründe für die Verwendung von Natriumcarbonat-Lösung und nicht Wasser zur Wasser-Analyse?
(ggf. im Experiment reines Wasser verwenden und vergleichen)

Hintergrund:

<table>
<thead>
<tr>
<th>T [°C]</th>
<th>(V \text{ (Sauerstoff)})</th>
<th>(V \text{ (Wasserstoff)})</th>
</tr>
</thead>
<tbody>
<tr>
<td>0°C</td>
<td>4,9 mL</td>
<td></td>
</tr>
<tr>
<td>20°C</td>
<td>3,1 mL</td>
<td>2 mL</td>
</tr>
<tr>
<td>100°C</td>
<td>1,7 mL</td>
<td></td>
</tr>
</tbody>
</table>

Didaktischer Hinweis:
Das Experiment kann als geschlossenes Experiment mit Anleitung oder für geübte Lernende als offenes Experiment mit gestaffelten Hilfen angeboten werden:
eine erste Hilfe wäre die Versuchsskizze,
eine zweite die Anleitung bis zur ersten Durchführung.
In jedem Fall ist darauf zu achten, dass die Spritzen am Beginn des Versuchs ganz mit Lösung gefüllt sind, um die Knallgas-Bildung zu vermeiden.
4.8 Synthese von Wasser B/D!

Zeitbedarf: 5 Minuten, Lehrende, 1
Kompetenz/Ziel:
F: Synthese (giftfrei); Zusammensetzung von Wasser
E: Aussagekraft von Molekül-Formeln, Stöchiometrie

Material:
• 2 Kabel, 50 cm, blau + rot
• Stativ, 2 Muffen
• Silicon-Schlauch
• Gummi-Schlauch
• Adapter, Mund-Stücke
• Eudiometer + Piezo-Zünder
• pneumatische Wanne mit Deckel
• Wasserstrahl-Pumpe, Schlauch

Chemikalien:
• Wasserstoff
 CAS-Nr.: 1333-74-0
 Gefahr H220, H280
 P210, P377, P381, P403
• Sauerstoff
 CAS-Nr.: 7782-44-7
 Gefahr H270, H280
 P244, P220, P370+P376, P403

Durchführung:
Eudiometer nach Skizze aufbauen.
Durch Saugen am Silicon-Schlauch (Wasserstrahl-Pumpe. Ventil öffnen) von unten mit Wasser füllen.
Dann Gase einfüllen: erst 4 Teile Sauerstoff, dann 4 Teile Wasserstoff, zünden.

Beobachtung 1:
Es bleibt ein Rest von 2 Teilen Gas übrig
Deutung 1:
Es ist zu viel Sauerstoff eingesetzt worden:

\[4H_2(g) + 4O_2(g) \rightarrow 2H_2O(l) + 3O_2(g) \]

Durchführung 2:
Gas-Gemisch aus 4 Teilen Sauerstoff und 2 Teilen Wasserstoff zünden.
Beobachtung 2: Es bleibt ein Rest von 3 Teilen Gas übrig.
Deutung 2:
Es ist zu viel Sauerstoff eingesetzt worden:

\[2H_2(g) + 4O_2(g) \rightarrow 2H_2O(l) + 3O_2(g) \]
Durchführung 3:
Gas-Gemisch aus 2 Teilen Sauerstoff und 4 Teilen Wasserstoff zünden.

Beobachtung 3:
Es bleibt kein Rest Gas übrig

Deutung 3:

\[4 \text{H}_2(\text{g}) + 2 \text{O}_2(\text{g}) \rightarrow 4 \text{H}_2\text{O}(\text{l})\]

Benötigt wird offenbar ein Verhältnis H:O = 2:1

Quelle:

WWW:
http://www.seilnacht.tuttlingen.com/versuche/massenv.html
4.9 Erste Knallgasprobe

Zeitbedarf: ca. 10-15 Minuten. Lernende Kompetenz/Ziel:
F = Elektrolyse von Wasser mit Hilfe elektrische Stroms als endotherme Reaktion,
E = Herleitung des Hoffmann’schen Zersetzungsapparates,
K = Formulieren mehrerer Versuchsbeobachtungen,
B = Eindeutigkeit der Interpretation des Versuchsergebnisses

Material:
- Injektionsfläschchen 5mL und 2mL
- Stopfen für 1mL Fläschchen
- 9V Blockbatterie
- Teelicht
- 2 Experimentierkabel mit Krokodilklemme, rot und blau
- 2 Kanülen, Ø1,2mm x L4mm
- Feuerzeug

Chemikalien:
- Natriumsulfat-Lösung gesättigt
 CAS-Nr.: 7757-82-6 (wasserfrei)
 CAS-Nr.: 7727-73-3 (Decahydrat)

Durchführung 1:

Durchführung 2:
Sobald das 2mL Injektionsfläschchen „leer“ bzw. die Natriumsulfat-Lösung verdrängt ist, wird das Gas die Knallgasprobe durchgeführt. Dafür die Krokodilklemmen sowie die Kanülen entfernen. Das Teelicht anzünden und dann möglichst rasch den Stöpsel des Fläschchens entfernen und die Flaschenöffnung zügig an die Flamme halten.

Beobachtung 1:

Deutung 1:
Durch Energiezufuhr in Form von elektrischem Strom findet eine Zersetzung der Wasser-Moleküle in Wasserstoff (g) und Sauerstoff (g) statt.

\[2\text{H}_2\text{O} \rightarrow 2\text{H}_2 + \text{O}_2 \]

Beobachtung 2:
Es ist ein recht lautes Pfeifen zu hören, das durch den Luftstoß meist die Flamme zum Erlöschen bringt.

Deutung 2:
Das Gemisch aus Wasserstoff- und Sauerstoff-Gas im Gläschen reagiert durch die Aktivierungsenergie der Kerzenflamme wieder zu Wasser zurück.

\[2\text{H}_2 + \text{O}_2 \rightarrow 2\text{H}_2\text{O} \]

Dabei wird die zuvor bei Durchführung 1 bei der Elektrolyse zugeführte Energie wieder schlagartig freigesetzt. Die Energiefreisetzung wird durch die Öffnung des Gläschens kanalisiert, so dass das Pfeifen durch Schallwellen entsteht.

Diskussion:
Dieser Versuch kann auch mit Lernenden der 5 Jahrgangsstufe im Natur und Technik Unterricht als Beispiel für die chemische Reaktion durchgeführt werden. Im Chemieunterricht höheren Jahrgangsstufen (8NTG) wird dann zusätzlich die unterschiedlich starke Gasentwicklung an beiden Elektroden thematisiert und

Entsorgung:
Natriumsulfat-Lösung in den Ausguss

Quelle:
Materialsammlung von Waltraud Habelitz-Tkotz
4.10 Erhitzen von Kupfer im Verbrennungsrohr

Zeitbedarf: 10 Minuten, Lernende, n

Kompetenz/Ziel:
E: Ausschluss nichtzutreffender Versuchsdeutungen; naturwissenschaftliche Denk- und Arbeitsweise; Ergänzung zum Kupfer-Briefchen-Versuch (4.10)

Material:
- Brenner, Feuerzeug
- Stativ, Muffe, Klammer
- Verbrennungsrohr
- Streichholz

Chemikalien:
- Kupfer-Folie
 CAS-Nr.: 7440-50-8
d~ 0,2 mm, 6x12 cm

Durchführung:
Die Kupfer-Folie wird in die Mitte eines Verbrennungsrohres gesteckt, das Rohr wird schräg eingespannt und unter der Kupfer-Folie erst vorsichtig, dann kräftig erhitzt.
Die Luft-Strömung wird durch das Verhalten eines brennenden Streichholzes am oberen Ende des Reaktionsrohres geprüft.

Beobachtung:
Anfangs bildet sich auf der Kupfer-Folie ein rote Anlauf-Farbe, dann tritt allmählich eine Schwarz-Färbung ein.

Deutung:
Da das Kupfer unter diesen Bedingungen zwar mit heißer Luft, nicht aber direkt mit der Flamme in Berührung kam, muss sich der schwarze Belag aus Kupfer und einem Bestandteil der Luft gebildet haben.
Es kann also keinesfalls Ruß sein.
Es handelt sich um Kupfer(II)-oxid.

\[
2Cu + O_2 \rightarrow 2CuO
\]
(schwarz)

Entsorgung:
Kupfer-Folie wiederverwenden

Quelle:
Didaktik der Chemie, Universität Bayreuth

WWW:
http://www.chemieunterricht.de/dc2/grundsch/versuche/gs-v-091.htm
Kupferbriefchen
4.11 Kohlenstoffdioxid und Wasser D!

Zeitbedarf: 15 Minuten, Lernende

Kompetenz/Ziel:
F: Gase lösen sich (und reagieren) in Wasser
E: Erklärung überraschender Versuchsergebnisse; Teilchen-Modell des Löse-Vorgangs

Material:
- Messzylinder, 500 mL, Kunststoff
- pneumatische Wanne
- Stativ, Muffe, Klammer
- Parafilm / Abdeck-Scheibe
- Spritze, 50 mL
- Silicon-Schlauch, ca. 50 cm
- Reagenzglas, d= 30 mm
- Reagenzglas-Gestell

Chemikalien:
- 2-3 Brause-Tabletten aus dem Lebensmittel-Handel möglichst ohne Farbstoffe
- Kalkwasser (Calciumhydroxid-Lösung)
 CAS-Nr.: 1305-62-0
 Gefahr
 H315, H318
 P280, P305+P351+P338

Vorbereitung:

LEHRENDE:

LERNENDE:

Durchführung 1: Lernende
Zylinder so weit anheben, dass man die Brause-Tablette schnell darunter schieben kann, dann schnell bis zum Boden absenken.

Beobachtung 1:
Die Brause-Tabletten entwickelt ein Gas, das aus dem Zylinder Wasser verdrängt.

Auswertung 1:
Notieren Sie das Volumen des entstandenen Gases: \(V_1 = X \text{ mL} \)

Durchführung 2:
Schieben sie nach dem Ablesen eine zweite Tablette in den Zylinder.

Beobachtung 2:
Die Brause-Tablette entwickelt ein Gas, das aus dem Zylinder Wasser verdrängt.
Auswertung 2:
Notieren Sie das Gas-Volumen jetzt: \(V_g = X \text{ mL} \)
Berechnen Sie den Gas-Anteil der zweiten Brause-Tablette: \(V_2 = V_g - V_1 \)

Deutung:
\(V_2 > V_1 \), da sich von \(V_1 \) ein großer Anteil in Wasser löst.
Dadurch wird eine gewisse Sättigung des Wassers mit Kohlenstoffdioxid erreicht.
Deshalb wird das gesamte erzeugte \(V_2 \) erkennbar.

Aufgabe:
Entspricht die Beobachtung \((V_2) \) Ihrer Voraussage? Diskutieren Sie mögliche Ursachen.

Durchführung 3:
Zylinder leicht neigen.
Silicon-Schlauch an die Spritze anbringen, durch die Sperr-Flüssigkeit ins Gas schieben und 50 mL Gas entnehmen.
Reagenzglas zu etwa 1/3 mit Kalkwasser füllen und Gas aus der Spritze (Schlauch bis zum Boden einführen) durchleiten.

Beobachtung 3:
Kalkwasser trübt sich.

Deutung:
Bei dem Gas handelt es sich um Kohlenstoffdioxid \(\text{CO}_2 \). \(V_2 > V_1 \), da sich von \(V_1 \) ein großer Anteil in Wasser löst, bis eine gewisse Sättigung erreicht ist. Deshalb kann das gesamte erzeugte \(V_2 \) frei werden.

Entsorgung: Ausguss

Quelle:

Hintergrund:

<table>
<thead>
<tr>
<th>(T) [^{\circ}C]</th>
<th>(V) (Sauerstoff) [^{\text{mL}}]</th>
<th>(V) (Kohlenstoffdioxid) [^{\text{mL}}]</th>
</tr>
</thead>
<tbody>
<tr>
<td>0(^{\circ})C</td>
<td>4,9 mL</td>
<td>171 mL</td>
</tr>
<tr>
<td>20(^{\circ})C</td>
<td>3,1 mL</td>
<td>88 mL</td>
</tr>
<tr>
<td>100(^{\circ})C</td>
<td>1,7 mL</td>
<td></td>
</tr>
</tbody>
</table>

Didaktischer Hinweis:
- Etwas \(\text{CO}_2 \) wird durch die Wasser-Strömung stets aus dem Zylinder herausgedrückt, das verfälscht das Ergebnis aber nicht maßgeblich.
- Reaktionsgeschwindigkeit, Löslichkeit und Gas-Volumen hängen von der Temperatur ab, die aber hier kaum eine Rolle spielt: \(V_2 \) wird in jedem Fall größer sein als \(V_1 \).

WWW:
http://www.espere.net/Germany/water/dewatexpslowde.html
Experiment zur Temperaturabhängigkeit der Löslichkeit von Luft.
4.12 Wasser als Löse-Mittel D!

Zeitbedarf: 2 Minuten, Lehrende, n
Kompetenz/Ziel:
E: Abhängigkeit der Reaktionsgeschwindigkeit vom Aggregat-Zustand

Material:
- Reagenzglas, d= 18 mm
- Reagenzglas-Gestell
- Pulver-Spatel
- Wisch-Papier
- Kaliumhexacyanoferrat(II)-Trihydrat
 CAS-Nr.: 14459-95-1
 H412 P273
- VE-Wasser

 Chemikalien:
- Eisen(III)-chlorid-Hexahydrat
 CAS-Nr.: 10025-77-1
 Gefahr
 H290, H302, H315, H318, H317
 P280, P302+P352, P305+P351+P338
- Kaliumhexacyanoferrat(II)-Trihydrat
 CAS-Nr.: 14459-95-1
 H412 P273

Durchführung 1:
Jeweils große Spatel-Spitzen Eisen(III)-chlorid und Kaliumhexacyanoferrat(II) im Reagenzglas trocken mischen. Spatel mit Papier gleich sauber wischen.

Beobachtung 1:
Zunächst keine, bei dauerndem Schütteln sehr langsam eintretende Farbänderung erkennbar.

Durchführung 2:
Ca. 10 mL Wasser aus der Spritz-Flasche kräftig einspritzen (erspart das Rühren).

Beobachtung 2:
Sofort entsteht ein kräftig blau gefärbtes Produkt.

Deutung:
In Lösung (beide Edukte sind Salze) werden die reagierenden Ionen beweglich, sodass die Reaktion schneller ablaufen kann. Es bildet sich Berliner Blau K[Fe\text{III}Fe\text{II}(CN)\text{6}]

Entsorgung:
E8

Quelle:
Didaktik der Chemie, Universität Bayreuth

Hintergrund:
Teilchen reagieren sehr langsam, wenn sie in ein Kristall-Gitter eingebunden sind.

Didaktischer Hinweis:
Beide Edukte sehen gelb bzw. hellbraun aus, das Produkt ist kräftig blau gefärbt. Die chemische Veränderung ist gut sichtbar und tritt an der Oberfläche ohne Wasser auch bei Feststoffen (langsam) ein.

Teilchen-Vorstellung: in Lösung herrscht bessere Verteilung und Beweglichkeit.
5. Verbrennung / Termin: 26.05.2020

5.1 Brennende Kerze im abgeschlossenen Luft-Raum

Zeitbedarf: 3 Minuten, Lernende, n

Kompetenz/Ziel:
F: Verbrennungsprozesse benötigen Sauerstoff
E: Erkennen (halb)quantitativer Zusammenhänge

Material:
- Becherglas, 100 mL
- Becherglas, 250 mL
- Becherglas, 400 mL
- Teelicht
- Stoppuhr

Durchführung:
Über das brennende Teelicht stülpt man nach-
einander die verschieden großen Becherglä-
ser und registriert die Zeit, bis die Kerze aus-
geht.

Beobachtung:
Zeiten ca. 6, 9, 13 Sekunden

Deutung:
Die Kerze verbraucht Sauerstoff, bis der Anteil für das Aufrechterhalten der Verbrennung von Kerzen-Wachs nicht mehr ausreicht.

Quelle:

Diskussion:
Je größer …, desto …

Didaktischer Hinweis:
Versuch nur für grob qualitative Ebene geeignet: „je größer das Becherglas (die Luft-Menge) desto später erlischt die Kerze“

WWW:
Verbrennung und Luft
5.2 Brennbare Flüssigkeiten aus dem Haushalt

Zeitbedarf: 3 + 5 Minuten, Lehrende, n
Kompetenz/Ziel:
F: Entzündungstemperatur und Flamm-Punkt abschätzen
B: Feuer-Gefährlichkeit von Alltagsprodukten. Sicherheit im Haushalt

Material:
- Drei-Bein
- 2 Keramik-Drahtnetze
- 2 Abdampfschalen

Chemikalien:
- Spiritus (Ethanol)
 - CAS-Nr.: 64-17-5
- Heizöl

Durchführung 1:
In eine Abdampfschale gibt man 2-3 mL Spiritus, in die Zweite genauso viel Heizöl. Dann nähert man von oben einen brennenden Span den beiden Flüssigkeiten.

Beobachtung 1:
Spiritus lässt sich entzünden, Heizöl nicht.

Durchführung 2:

Beobachtung 2:
Nach Erhitzen Selbst-Entzündung

Entsorgung:
Flüssigkeiten vollständig verbrennen, Gefäße abkühlen lassen.

Quelle:

Diskussion:
Frittierfett auf dem Herd, Adventskranz im Ofen.

WWW:
http://www.ifs-kiel.de/aktuelles/schadenfaelle/sesamoel.pdf
http://www.sphinx-suche.de/lexpara/irrlicht.htm
5.3 Luft-Analyse I: Verbrennung von rotem Phosphor (wird nicht durchgeführt)

Zeitbedarf: 3 + 15 Minuten, demo
Kompetenz/Ziel:
F: Verbrennung und Sauerstoff-Verbrauch
B: Möglich Ermittlung der (halb)quantitativen Zusammensetzung der Luft („Unversuch“)

Material:
- pneumatische Wanne
- Gas-Glocke
- Verbrennungslöffel
 an passendem Stopfen
- PVC(!)-Scheiben
- Spatel
- Indikator???

Chemikalien:
- Phosphor, rot
 CAS-Nr.: 7723-14-0

Durchführung:

Beobachtung:
Der Wasser-Spiegel sinkt erst und steigt später an bis etwa zur 2. Marke.

Auswertung:
Quantitative Auswertung sehr problematisch! Siehe Didaktische Hinweise.

Deutung:
Phosphor benötigt zur Verbrennung den Sauerstoff der Luft. Das (feste!) Verbrennungsprodukt (Rauch!) löst sich in Wasser und nimmt den Sauerstoff mit.

Entsorgung:
Das Wasser ist nur leicht sauer: E1
Verbrennungslöffel ausglühen (Explosionsgefahr bei anschließender Verwendung zur Schwefel-Verbrennung!!!)

Quelle:
Schulbücher / EYDAM-Chemie, Praktikum Chemischer Demonstrationen, 1968
Varianten:
Statt rotem Phosphor wird gelegentlich weißer Phosphor oder eine Schwimm-Kerze vorge- schlagen. Das ändert nichts an der Problematik der Versuchsinterpretation, macht den Ver- such nur noch problematischer:
die Kerze verbraucht noch weniger Sauerstoff als Phosphor, der weiße Phosphor ist strak giftig und zieht aufwändige Reinigung der Geräte und hohen Entsorgungsaufwand nach sich.

Diskussion:
- Warum Phosphor? Kein gasförmiges Produkt bzw. gelöst
- Problem Phosphor und Schwefel im Verbrennungslöffel; Explosion möglich!
- Warum PVC-Stückchen und nicht PE oder PP?
- Problematik quantitativer Aussage!

Didaktischer Hinweis:
Der Versuch sollte nicht mit dem Ziel eingesetzt werden, die quantitative Zusammensetzung der Luft zu demonstrieren. Sobald ein Brennstoff außen gezündet wird, führt der Versuch zu den erwähnten Ergebnissen, die aber falsch gedeutet werden.

WWW:
http://www.fundgrube-physik-chemie.de/
5.4 Reduktion von Kupfer(II)-oxid mit Wasserstoff D!

Zeitbedarf: 20 Minuten, Lehrende

Kompetenz/Ziel:
F: Reduktion als Sauerstoff-Entzug

Material:
- 2 Stative, Muffen, Klamern
- Wasch-Flasche mit Fritten-Einsatz
- Quarz-Rohr, d= 24 mm
- 2 Silicon-Stopfen, mit Bohrung
- Glas-Rohr, Knie-Rohr mit Rückschlag-Sicherung
- Glas-Rohr, gerade
- Schlauch-Stück, ca. 5 cm
- Kupfer-Drahtnetz
- Reagenzglas, d= 18 mm
- Reagenzglas-Gestell

Chemikalien:
- Wasserstoff
 - CAS-Nr.: 1333-74-0
 - Gefahr
 - H220, H280
 - P210, P377, P381, P403
- Schwefelsäure (konz.)
 - w= 96%
 - CAS-Nr.: 7664-93-9
 - Gefahr
 - H290, H314
 - P280, P301+P330+P331, P305+P351+P338, P308+P310

Vorbereitung:
Oxidation des Kupfer-Drahtnetzes.

Durchführung:
Apparatur nach Skizze aufbauen (Wasch-flasche mit Stativ sichern!).
Einen gleichmäßigen Gas-Strom einstellen und ca. 1 Minute strömen lassen,
Dann Knallgas-Probe (Reagenzglas) ZWEIMAL durchführen.
Erst bei dumpfen Klang (also negativem Verlauf) Wasserstoff am Röhrenchen mit der Rückschlag-Sicherung anzünden und an der Stelle mit dem Kupfer-Drahtnetz bei rauschender Flamme kräftig erhitzen.

Beobachtung:
Kupfer wird blank.

Deutung:
\[\text{CuO} + \text{H}_2 \rightarrow \text{Cu} + \text{H}_2\text{O} \]

Quelle:

Diskussion:

WWW:
http://www.chemieunterricht.de/dc2/gefahr/gefv_05.htm
5.5 Luft-Analyse III: Oxidation von Eisen D!

Zeitbedarf: 10 Minuten + mindestens 30 Minuten Laufzeit, Lehrende, n

Kompetenz/Ziel: E: Quantitative Bestimmung des Sauerstoff-Gehaltes der Luft

Material:
- Glas-Rohr, d= 20 mm, L= 35 cm
- passender Stopfen, mit Bohrung
- Zwei-Wege-Hahn
- pneumatische Wanne
- Stativ, Muffe, Klammer
- Pinzette
- 2 Bechergläser, 250 mL
- Schutz-Handschuhe, Vinyl
- 2 Gummi-Bänder

Chemikalien:
- Essigsäure
 \[w= 5\% \]
 CAS-Nr.: 64-19-7
- Propanon (Aceton)
 CAS-Nr.: 67-64-1
 Gefahr: H225, H319, H336; EUH066
 P210, P240, P305+P351+P338, P403+P233
- Stahl-Wolle (handelsüblich)
- Schutz-Handschuhe, Vinyl
- 2 Gummi-Bänder

Durchführung:
Die pneumatische Wanne zu 2/3 mit Wasser füllen.
Das Glas-Rohr am Stativ senkrecht einspannen. Noch unterhalb der Klammer die beiden Gummi-Bänder um das Rohr schlingen.
Nun ca. 2 g Stahl-Wolle zylinderförmig zusammendrücken, mit Hilfe der Pinzette gründlich in Aceton spülen, trocken schwenken, dann in die Essigsäure tauchen und so schnell wie möglich in das Glas-Rohr bringen.
Stopfen bei geöffnetem Hahn aufsetzen, dann Hahn schließen.
Wasser-Spiegel am Rohr mit dem untersten Gummi markieren.

Beobachtung:

Deutung:
Die Stahl-Wolle hat mit dem Sauerstoff der Luft vollständig reagiert.
Berechnen Sie das Verhältnis zwischen Wasser-Säule und überstehendem Gas-Volumen im Glas-Rohr:
\[V_W : V_G = X : X \]
Ergebnis: In der Luft müssen 20% (Erfahrungswerte bei dichter Apparatur: zwischen 17,5% und 20,2%) Sauerstoff enthalten sein.

Entsorgung: E3

Kritik in: Chemie in der Schule, 32, 1985, Heft 8/9
Diskussion: Rolle des Acetons und der Essigsäure

Hintergrund: siehe Versuch 05.03 „Luft-Analyse I“

Didaktischer Hinweis:
5.6 Feuer löschen I

Zeitbedarf: 10 Minuten, Lehrende, 1

Kompetenz/Ziel:
- **F**: Entzündungstemperatur, Flamm-Punkt
- **B**: „Richtige“ Feuerlösch-Methoden begründet aussuchen; Feuerlösch-Methoden auf Bedingungen für das Brennen zurückführen.

Material:
- Becherglas, 400 mL, weit
- Brenner, Feuerzeug
- Tiegel-Zange
- Paraffin-Öl
 - CAS-Nr.: 8012-95-1
- feuerfeste Unterlage
- Keramik-Dreieck
- Eisen-Tiegel
- Chemikalien:
 - Eis

Durchführung:
Eis-Wasser im Becherglas bereiten. Im Eisen-Tiegel Paraffin-Öl erhitzen, bis es sich entzünden lässt und von allein weiter brennt (Tiegel-Zange). Dann die untere Hälfte des Tiegels mit dem brennenden Paraffin *(NICHT VERSCHÜTTE*) in das Eis-Wasser tauchen.

Beobachtung:
Die Flamme erlischt bald.

Deutung:
Durch Abkühlen unter die Entzündungstemperatur wird das Feuer gelöscht.

Entsorgung:
Paraffin-Öl kann wiederverwendet werden.

Quelle:
Praktikumsskript P. Pfeifer (1993)

Diskussion:

WWW:
http://www.lfv-bayern.de/cms/fachthemen/brandschutzaufklarung/osterfeuer.html
5.7 Feuer löschen II D!

Zeitbedarf: 15 Minuten, Lehrende, n

Kompetenz/Ziel:
- F: Dichte von Flüssigkeiten
- E: Feuer-Löscher herstellen
- B: Auswahl geeigneter Feuerlöscher-Methoden

Material:
- Erlenmeyer-Kolben, 500 mL, eng
- Stopfen, mit Bohrung
- Glas-Rohr, gebogen, L= 10 cm
- Löffel-Spatel
- Hand-Brenner
- Abdampfschale, d= 80 mm
- Kristallisierschale, d= 140 mm (Duran-Glas)
- Zitronensäure
 - CAS-Nr.: 5949-29-1

Chemikalien:
- Natriumhydrogencarbonat
 - CAS-Nr.: 144-55-8
- Spülmittel
- VE-Wasser in Spritz-Flasche
- Benzin

Durchführung 1:
5-7 mL Benzin (1 Löffel) in die Abdampf-Schale geben und in die große Schale stellen. Benzin anzünden.

Versuchen, mit Wasser aus der Spritz-Flasche das brennende Benzin zu löschen.

Beobachtung 1:
Nach Zugabe von Wasser brennt Benzin weiter.

Deutung 1:
Wasser hat eine größere Dichte als Benzin und sinkt ab. Benzin schwimmt auf und kann weiter brennen.

Durchführung 2: Im Erlenmeyer-Kolben ca. 2 Löffel-Spatel Natriumhydrogencarbonat in 300 mL Wasser lösen. Etwa 20 Tropfen Spülmittel zugeben. Steig-Rohr so in dem Stopfen fixieren, dass das eine Ende im Erlenmeyer-Kolben 1 cm über dem Flüssigkeitsspiegel steht. Zum Schluss schnell 3 Spatel-Spitzen Zitronensäure zugeben und sofort Stopfen mit dem Rohr aufsetzen.

Beobachtung 2:
Mit Schaum gelingt das Löschen

Deutung 2:
Der CO₂-gefüllte Schaum besitzt eine geringere Dichte als Benzin, deckt es also ab und vermag den Brennstoff von der Luft-Zufuhr abzuschneiden.

Entsorgung: Restliches Benzin abbrennen lassen. Rest-Wasser: E10, B3, E8

Quelle: Praktikumsskript P. Pfeifer (1993)

Diskussion: Interpretation. Wozu Spülmittel bzw. Schaum? Variante mit Brause-Pulver

WWW:
- http://www.chemieunterricht.de/dc2/grundschat/versuche/gs-v-027.htm
5.8 Kohlenstoffdioxid als Verbrennungsprodukt D!

Zeitbedarf: 15 Minuten, Lernende, n
Kompetenz/Ziel:
E: Nachweis von Wasser und Kohlenstoffdioxid als Verbrennungsprodukte

Material:
- Kerze oder Teelicht
- Feuerzeug
- Trichter, Glas
- 2 Schlauch-Stücke
- Stativ, Muffe, Klammer
- Wasch-Flasche mit Einsatz
- Wasserstrahl-Pumpe

Chemikalien:
- Kalkwasser (Calciumhydroxid-Lösung)
 CAS-Nr.: 1305-62-0
 Gefahr: H315, H318 P280, P305+P351+P338

Vorbereitung:
Kalkwasser frisch ansetzen: Calciumhydroxid in Wasser aufschlämmen, mindestens 24h stehen lassen und vor Gebrauch abfiltrieren.

Durchführung:
Apparatur nach Skizze aufbauen. Durch Ansaugen mit der Wasserstrahl-Pumpe werden die gasförmigen Verbrennungsprodukte einer Kerze durch Kalkwasser geleitet.

Beobachtung:
Anfangs beschlagen die kühlen Teile des Trichters mit Wasser-Tröpfchen. Kalkwasser trübt sich.

Deutung:
\[\text{CO}_2(\text{g}) + \text{Ca(OH)}_2(\text{aq}) \rightarrow \text{CaCO}_3(\text{s}) + \text{H}_2\text{O(l)} \]

Entsorgung: Kalkwasser kann in den Ausguss

Quelle:

Diskussion: Variante: (vorsichtig) hineinblasen.

Didaktischer Hinweis:
Wie könnte man zeigen, dass die Trübung nicht von jenem CO\(_2\) stammt, dass in der Luft so- wieso enthalten ist?

WWW:
Was beim Verbrennen von Brennstoffen entsteht
5.9 Wasser als Verbrennungsprodukt D!

Zeitbedarf: 15 Minuten, Lernende, n

Kompetenz/Ziel:
E: Nachweis von Wasser als Verbrennungsprodukt

Material:
- Trichter, Glas, d= 100 mm
- Becherglas, 600 mL
- U-Rohr mit Seiten-Tubus
- 2 Stative, Muffen, Klammern
- Feuerzeug

Chemikalien:
- Wassernachweis-Papier (Watesmo)
- Pinzette
- 2 Schlauch-Stücke, ca. 50 mm
- Petrischale
- Wasserstrahl-Pumpe
- Teelicht, groß
- Eis-Würfel

Durchführung 1: Variante Grundschule
Teelicht anzünden, Petrischale mit dem Eis-Würfel darin kurz (ca. 30 Sekunden) über die Flamme halten. Nachweis-Papier auf die bedampfte Stelle drücken.

Durchführung 2: Variante Realschule, Gymnasium
Apparatur nach Skizze aufbauen.
Teelicht anzünden, Gase mit der Wasserstrahl-Pumpe langsam durchsaugen

Beobachtung 2:
In der Kühl-Falle sammelt sich eine Flüssigkeit.

Deutung 2:
Bei der Flüssigkeit handelt es sich um Wasser.
Bewiesen werden kann das mit dem Wassernachweis-Papier, es färb sich blau.

Quelle:

Diskussion:
Wie beweist man … dass die Flüssigkeit Wasser ist?
 … dass sie nicht (hauptsächlich) aus der Luft stammt?

Wozu braucht man die Pinzette?

WWW:
http://www.chemieunterricht.de/dc2/grundsch/versuche/gs-v-092.htm
Was beim Verbrennen von Brennstoffen entsteht.
5.10 Brennbarkeit fein verteilter Metalle

Zeitbedarf: 2 Minuten, Lernende, 1

Kompetenz/Ziel:
F: fein verteilte Metalle sind brennbar, stark exotherme Reaktion
K: Chemie ist toll!

Material:
- Glas-Rohr, gebogen, ca. 10 cm
- Brenner, Feuerzeug
- Abdampfschale
- Alu-Folie, zum unterlegen

Chemikalien:
- **Eisen-Pulver**
 CAS-Nr.: 7439-89-6
 Achtung
 H228, H251
 P210, P260, P370+P378

- **Aluminium-Pulver**
 CAS-Nr.: 7429-90-5
 Gefahr
 H250, H261
 P210, P222, P231+P232, P422, P280, P335+P334

Vorbereitung:
Arbeitsplatz unter dem Abzug mit Alu-Folie auslegen.

Durchführung 1: ☢️ ⚠️
In das Glas-Rohr durch Eintauchen wenig Aluminium-Pulver füllen und vorsichtig von unten in die Flamme des Brenners blasen.

Achtung: Öffnung nicht auf Personen richten.

Beobachtung 1:
Aluminium verbrennt heftig mit weißer, heller Stich-Flamme

Durchführung 2:
Das Eisen-Pulver wird aus der Schale in die waagrecht gehaltene Brenner-Flamme gestreut.

Beobachtung 2:
Eisen-Partikel verbrennen unter starkem Glühen.

Deutung:
Bei großer Oberfläche d. h. bei sehr feiner Zerteilung brennen auch Metalle, die sich als massive Teile nicht entzünden lassen.

Entsorgung:
Alu-Folie in den Hausmüll

Quelle: Allgemeingut

Diskussion:
5.11 Atmung als Verbrennungsvorgang D!

Zeitbedarf: 5 Minuten, Lernende, 1

Kompetenz/Ziel:

F: Zell-Atmung als „Stille Oxidation“; aerober Stoffwechsel
E: Nachweis von Kohlenstoffdioxid mit Hilfe von Kalkwasser

Material:

- 2 Stative, Muffen, Klammern
- 2 Schlauch-Stücke
- Drei-Wege-Hahn
- 2 Waschflachen, mit Einsatz

Chemikalien:

- Kalkwasser
 - (Calciumhydroxid-Lösung)
 - CAS-Nr.: 1305-62-0

 Gefahr
 - H315, H318
 - P280, P305+P351+P338

Durchführung:

Apparatur nach Skizze aufbauen.
Die Wasch-Flaschen zu etwa ¼ mit Kalkwasser füllen.
Drei-Wege-Hahn so schalten, dass durch die linke Wasch-Fläche eingetretet und durch die rechte Wasch-Flasche ausgeatmet werden kann.
Drei langsames Atem-Züge genügen in der Regel.

Beobachtung:

Das Kalkwasser der rechten Wasch-Flasche trübt sich schneller und stärker.

Deutung:

Die ausgeatmete („verbrauchte“) Luft enthält mehr Kohlenstoffdioxid als die „frische“ Luft.

Entsorgung:

E1

Quelle:

Didaktischer Hinweis:

Einsatz auch im Biologie-Unterricht
5.12 Verbrennung in reinem Sauerstoff

Zeitbedarf: 10 Minuten, Lehrende, 1

Kompetenz/Ziel:

E: Reaktionsgeschwindigkeit und Stoff-Konzentration

Material:

- Stand-Zylinder
- Abdeck-Scheibe
- Verbrennungslöffel
- Brenner, Feuerzeug
- Gummi-Stopfen
- Reagenzglas, d= 30 mm
- Reagenzglas-Gestell
- Sauerstoff
 - CAS-Nr.: 7782-44-7
 - Gefahr: H270, H280, P244, P220, P370+P376, P403
- VE-Wasser

Chemikalien:

- **Lackmus-Lösung**
 - w= 1%
- **Schwefel-Pulver**
 - CAS-Nr.: 7704-34-9

Durchführung 1:

Beobachtung 1:

Schwefel brennt mit blauer Flamme. Es entsteht ein stechend riechendes Gas.

Deutung 1:

\[S(s) + O_2(g) \rightarrow SO_2(g) \]

Durchführung 2:

Wenn der Schwefel nicht mehr brennt, wird der Löffel entfernt (im Abzug abkühlen lassen), Wasser und 10 Tropfen Lackmus-Lösung zugeben und geschüttelt. Vergleichen Sie mit einer Lösung von 10 Tropfen Lackmus-Lösung der vergleichbaren Menge Wasser im Reagenzglas.

Beobachtung 2:

Die wässrige Lösung des Gases färbt Lackmus nach rot um.

Deutung 2:

\[SO_2(g) + H_2O(l) \rightarrow H_2SO_3 \]

Entsorgung:

Verbrennungslöffel im Abzug ausglühen (Reinigung)! Zylinder im Abzug ausdampfen lassen.

Quelle:

Diskussion: Variante an der Luft: Verwendung zum Schwefeln der Weinfässer bzw. zum Desinfizieren. Ähnlich: P, C
5.13 Verbrennen von Eisen-Wolle D!

Zeitbedarf: 3 Minuten, Lernende, 1

Kompetenz/Ziel:
E: Massen-Verhältnisse bei Verbrennungen, Oxidation, Reaktionen: Synthese
K: Aufstellen chemischer Formeln

Material:
- Pinzette
- Hand-Brenner
- Balken-Waage
- Wäge-Satz
- Alu-Folie, als Unterlage
- Draht, zum Aufhängen

Chemikalien:
- Stahl-Wolle (handelsüblich) (eigentlich Eisen)

Durchführung:
Ein etwa faustgroßes Stück feine Eisen-Wolle wird locker gezupft und als Bausch mit Hilfe des Drahtes an der einen Waagschale aufgehängt, die Schale selber durch Unterlegen von Alu-Folie geschützt (sie dient auch dem verbesserten Auffangen herabfallender Eisen-Tröpfchen).

Dann wird die Waage austariert. Mit dem Hand-Brenner die Eisen-Wolle anzünden.

Beobachtung:
Die Masse nimmt beim Verbrennen zu.

Deutung:
\[2\text{Fe(s)} + \text{O}_2\text{(g)} \rightarrow 2\text{FeO(s)}\]
(grau)

Entsorgung: Verbrannte Eisen-Wolle: E3

Quelle: EYDAM-Chemie, Praktikum Chemischer Demonstrationen, 1968

Diskussion:
Optischen Effekt durch Abdunkelung erhöhen.

Didaktischer Hinweis:
Diskussion des Widerspruchs zur Alltagsbeobachtung an Papier, Holz: „wird durch Verbrennen leichter“.
Historisch Verbrennungstheorie nach v. Stahl: „Phlogiston-Theorie“.
Zünden durch 4,5 V-Batterie: nur Oberstufe versteht den Sinn.

WWW:
http://www.seilnacht.tuttlingen.com/Lexikon/Oxidat.htm
http://www.micrecol.de/luft10.html
5.14 Brennbare Sprüh-Nebel

Zeitbedarf: 1 Minute, Lehrende, 1

Kompetenz/Ziel:
B: Feuergefährlichkeit von Alltagschemikalien; Sicherheitserziehung

Material:
- Feuerzeug

Chemikalien:
- Haarspray

Achtung

Durchführung:
Haarspray sprühen und mit dem Feuerzeug aus ca. 5cm Entfernung vom Sprühkopf anzünden.
ACHTUNG: In der Sprüh-Richtung dürfen sich keine Personen befinden.

Beobachtung:
Es entsteht eine ca. 50 cm lange Stich-Flamme!

Deutung:
Im Treibgas sind brennbare Gase enthalten.

Entsorgung:
-

Quelle:
Allgemeingut

Hintergrund:
Lesen Sie die Deklaration auf der Sprüh-Dose: man findet Butan, Propan…

Didaktischer Hinweis:
Diskussion: Soll man den Versuch Lernenden nicht zeigen, damit sie ihn nicht etwa zu Hause nachmachen, oder soll man ihn zeigen, damit man aus diesem Anlass vor den Gefahren beim Haar sprayen und gleichzeitig rauchen bzw. föhnen warnt.

WWW:
http://www.feuerwehr-kronau.de/burgerinformationen/spraydosen/
5.15 Analyse von Luft IV: Oxidation von Eisen

Zeitbedarf: 10 Minuten, Lernende, n

Kompetenz/Ziel:
E: Halbquantitative Bestimmung des Sauerstoff-Gehaltes der Luft

Material:
- Becherglas, 600 mL
- Brenner, Feuerzeug
- Reagenzglas, d= 18 mm
- Stopfen, für Reagenzglas
- Pulver-Spatel
- Lineal mit cm-Einteilung

Chemikalien:
- Eisen-Pulver
 CAS-Nr.: 7439-89-6

Achtung:
H228, H251
P210, P260, P370+P378

Durchführung:
In das Reagenzglas einen Spatel Eisen-Pulver geben und mit dem Stopfen (fest!) verschließen, da sonst heiße Luft entweicht und das Ergebnis verfälscht.
Die Höhe des Reagenzglases vom Boden bis zur unteren Stopfen-Grenze messen. Er darf sich während des Erhitzens (Überdruck!) nicht lösen und wird daher mit dem Daumen festgehalten (Glas ist ein scher schlechter Wärme-Leiter, also keine Angst vor Verbrennungen, solange man das Reagenzglas nur oben berührt).
Das Reagenzglas wird schräg über dem Brenner unter ständigem Schütteln am unteren Ende erhitzt, bis sich das Pulver deutlich schwarz verfärbt hat.
Man lässt das Reagenzglas abkühlen (zuerst an der Luft, dann unter dem Wasser-Hahn) und taucht es mit der Mündung in das mit Wasser gefüllte Becherglas ein.
Unter Wasser wird nun der stopfen gegen den Unterdruck herausgezogen.
Die Steig-Höhe des Wassers wird gemessen.

Beobachtung:
Das graue Eisen hat sich zu einem schwarzen Stoff verändert. Nach Entfernung des Stopfens wird Wasser in das Reagenzglas gesaugt.

Deutung:
Das Eisen-Pulver hat mit dem Sauerstoff der Luft vollständig reagiert.

\[2\text{Fe} + \text{O}_2 \rightarrow 2\text{FeO} \]

Auswertung:
Berechnen Sie das Verhältnis zwischen Wasser-Säule und dem ursprünglichen Gas-Volumen im Reagenzglas: \(V_W : V_g = X : X \)

Ergebnis:
In der Luft müssen 20% (Erfahrungswerte bei dichter Apparatur: zwischen 17,5% und 22%) Sauerstoff enthalten sein.

Entsorgung: E3

Quelle: G. Ströhla, Universität Bayreuth

Hintergrund: siehe: Luft-Analyse I: Verbrennung von rotem Phosphor

Didaktischer Hinweis:
Quantitative Aussagen zum Sauerstoff-Gehalt der Luft sind mit diesem Experiment trotz der Einfachheit einigermaßen zuverlässig möglich.
6. Redox-Reaktionen / Termin: 09.06.2020

6.1 Knallgas-Reaktion

Zeitbedarf: 3 Minuten, Lehrende, 1
Kompetenz/Ziel:
F: Synthese, Knallgas-Reaktion
B: Explosivität von Gas-Gemischen

Material:
- Porzellan- oder Metall-Schale
- Glimm-Span

Chemikalien:
- Spülmittel
- Wasserstoff
 CAS-Nr.: 1333-74-0
 Gefahr
 H220, H280
 P210, P377, P381, P403
- Sauerstoff
 CAS-Nr.: 7782-44-7
 Gefahr
 H270, H280
 P244, P220, P370+P376, P403

Durchführung:
Mit den Ausleit-Schläuchen der Stahl-Flaschen lässt man das Wasser mit dem Spülmittel etwas aufschäumen.

ACHTUNG 1: Zahl und Größe der Schaum-Blasen zusammen sind ein Maß für die Lautstärke des zu erwartenden Knalls! Richt-Größe: 10-20 Blasen mit d= 1 cm. Sonst sehr lauter Knall!!!

ACHTUNG 2: bei Verwendung von Glas- oder Porzellan-Schalen diese bis ca. 1cm unterhalb des Randes mit Wasser füllen. (Warum?) Mit einem Langen Glimm-Span werden die gefüllten Schaum-Blasen entzündet.

Beobachtung:
Explosionsartige Reaktion.

Deutung:

\[2\text{H}_2(g) + \text{O}_2(g) \rightarrow 2\text{H}_2\text{O}(l) \]

\[\Delta_r H^0 = \text{572 kJ/mol} \quad \Delta_f H^0 = \text{-286 kJ/mol} \]

Entsorgung:
Wasser mit dem Spülmittel in den Ausguss

Quelle: Schulbücher

Diskussion:
Explosion, hohe Reaktionsenthalpien, Unterschied ΔH^0 und $\Delta_f H^0$

WWW:
Animation der Reaktion im Kalotten-Modell (gif)
Von der Knallgas-Reaktion über die Atmungskette zur Brennstoff-Zelle
6.2 Kaliumnitrat als Oxidationsmittel D!

Zeitbedarf: 10 Minuten, Lehrende, 1

Kompetenz/Ziel:
F: Oxidationsmittel, Oxidationsschmelze
B: Sicherheit beim Umgang mit brandfördernden Substanzen

Material:
- Reagenzglas, d= 30 mm, Borosilikat-Glas
- Stativ, Muffe, Klammer
- feuerfeste Unterlage

Chemikalien:
- Kaliumnitrat
 CAS-Nr.: 7757-79-1
 Achtung
 H272
 P210, P221

Durchführung:
Das schwer schmelzbare Reagenzglas wird leicht schräg eingespannt und ca. 3 cm hoch mit Kaliumnitrat gefüllt.
Dann erhitzt man kräftig mit der Brenner-Flamme.
Wenn Gas-Blasen aufsteigen, wirft man Holz-Stückchen auf die Schmelze.
Nicht über das Reagenzglas beugen und hineinlinsen!!!
Die Schmelze für die folgenden Gruppen stehen lassen.

Beobachtung:
Holz-Stückchen „verschwinden“ unter Zischen.

Deutung:
\[2\text{KNO}_3 \rightarrow 2\text{KNO}_2 + \text{O}_2\] \[\text{dH}>0\]
\[\text{C}_x\text{H}_y+z\text{O}_2 \rightarrow x\text{CO}_2 + \frac{y}{2}\text{H}_2\text{O}\] \[\text{dH}>0\]

Entsorgung:
E3

Quelle:

Diskussion:
Was ist in den zu beobachteten Blasen drin?
Übrigens: für Gummibären ist das die Hölle ;-)
6.3 Thermit-Versuch selbstbau B/D!

Zeitbedarf: 15 Minuten + Zeit bis zum Erkalten (20-30 Minuten), Lehrende

Kompetenz/Ziel:
F: Affinität von Metallen zu Sauerstoff, Bindungsenthalpie, exotherme Reaktion
B: Anwendung zum Schweißen von Eisenbahn-Schienen

Material:
- Hand-Brenner
- Tiegel-Zange
- Schere
- Blumen-Topf d> 13 cm
- Ziegel-Stein

Chemikalien:
- **Eisen(III)-oxid**
 CAS-Nr.: 1309-37-1
 Achtung
 H315, H319, H335
 P280, P302+P352, P305+P351+P338
- **Aluminium, Grieß**
 CAS-Nr.: 7429-90-5
- **Magnesium-Band**
 CAS-Nr.: 7439-95-4
- **Eisen-Pulver**
 CAS-Nr.: 7439-89-6
 Achtung
 H228, H251
 P210, P260, P370+P378

- **Aluminium-Pulver**
 CAS-Nr.: 7429-90-5
 Gefahr
 H250, H261
 P210, P222, P231+P232, P422, P280, P335+P334

- **Kaliumpermanganat (s)**
 CAS-Nr.: 7722-64-7
 Gefahr
 H272, H302, H314, H410
 P220, P273, P280, P305+P351+P338, P310, P501

Durchführung: oder im Freien

Mit einem Ton-Scherben wird das Boden-Loch des Blumen-Topfes bedeckt.
Dan wird eine Mischung aus 145 g Eisen(III)-oxid, 52 g Aluminium-Grieß und 3 g Aluminium-Pulver hergestellt.
Pro Versuch genügt 1/5 der Gesamt-Menge.

Als Zündmischung dient ein Gemenge im Massen-Verhältnis 1:1 Kaliumpermanganat: Eisen-Pulver. Sie wird in eine kleine Vertiefung der Thermit Mischung gegeben und mit einem Streifen Magnesium-Band (Zündschnur-Funktion, ca. 15 cm) versehen.
Das Magnesium-Band sollte idealerweise an dem Ende, das in die Zünd-Mischung gesteckt wird, etwas geknüllt, am anderen mit der Schere in 2-3 Enden ca. 1 cm geteilt werden.
 Dann wird der komplette Topf auf einen Ziegel-Stein im Freien oder in einer Sand-Schüssel unter dem Abzug gestellt und das Magnesium-Band angezündet.

Ca. 5 Schritte Abstand halten: es spritzen glühende Schlacke-Bröckchen!
Beobachtung:
Die Reaktion findet unter heftiger Feuer-Erscheinung statt.

Auswertung:
Bei der Reaktion entsteht flüssiges Eisen:

\[2\text{Al} + \text{Fe}_2\text{O}_3 \rightarrow \text{Al}_2\text{O}_3 + 2\text{Fe}\]
\[dH= 852 \text{ kJ}\]

Schlake Regulus

Deutung:
Nach der Reaktion erkalten lassen.
Den entstandenen Brocken mit der Tiegel-Zange herausnehmen und auf einer schlagfesten Unterlage mit dem Hammer bearbeiten:
in einer Hülle von Schlacke (nichtmetallische Reaktionsprodukte) findet man den Regulus, das erstarrt Eisen.
Er kann mit Hilfe des Magneten identifiziert werden.

Entsorgung:
E3

Quelle:
EYDAM-Chemie, Praktikum Chemischer Demonstrationen, 1968

Diskussion:
Aus welchem/n chemischen Verbindung/en besteht die Schlacke?

Hintergrund:
Die Reaktion dient heute noch zum Schweißen von Eisenbahn-Schienen

WWW:
http://www.elektro-thermit.de/ - ein Hersteller
http://www.experimentalchemie.de/versuch-019.htm - mit Bildern
6.4 Thermit-Demonstrationskasten (Hedinger) B/D!

Zeitbedarf: 15 Minuten + Zeit bis zum Erkalten (20-30 Minuten), Lehrende
Kompetenz/Ziel:
F: Affinität von Metallen zu Sauerstoff, Bindungsenthalpie, exotherme Reaktion
B: Anwendung zum Schießen von Eisenbahn-Schienen

Material:
- Hand-Brenner
- Aluminothermie-Demonstrationskasten*
- Magnet

Chemikalien:
- Thermit, 500 g

Durchführung: oder im Freien
Mit einer Verschluss-Platte wird das Boden-Loch des Reaktionstiegels bedeckt.
Dann wird der Inhalt der Thermit-Packung eingefüllt. Mit dem Deckel abdecken und die Anordnung nach Anleitung aufbauen.
Entzündungsstäbchen mit Handschuh anfassen, mit dem Hand-Brenner anzünden und zügig durch das Deckel-Loch in das Thermit drücken.
Ein paar Schritte zurücktreten.

Beobachtung:
Eine Reaktion findet unter heftiger Feuer-Erscheinung statt.

Auswertung:
Bei der Reaktion entsteht flüssiges Eisen:

\[2\text{Al} + \text{Fe}_2\text{O}_3 \rightarrow \text{Al}_2\text{O}_3 + 2\text{Fe} \quad d,\text{H}= 852 \text{ kJ} \]
Schlacke Regulus

Deutung:
Nach dem Erkalten wird das Produkt durch vorsichtiges Klopfen mit dem umgedrehten Auffang-Tiegel auf eine Unterlage herausgeholt.
Durch Klopfen mit dem Hammer trennt sich die Schlacke vom Regulus.
Mit Hilfe des Magneten wird der Regulus als Eisen identifiziert.
Reaktionstiegel mit Hilfe des beiliegenden Dornes durch das Ausfluss-Loch von der verbliebenen Schlacke reinigen.

Entsorgung: E3
Quelle: Hedinger

Hintergrund:
Die Reaktion dient heute noch zum Schweißen von Eisenbahn-Schienen
WWW: Ein Video mit Schienenschweißen
6.5 Verbrennung in Wasserstoff-Atmosphäre

Zeitbedarf: 3 Minuten, Lehrende, 1
Kompetenz/Ziel:
F: Wasserstoff als brennbares, aber nicht verbrennungsförderndes Gas.
E: Notwendigkeit von Sauerstoff für Verbrennungen.

Material:
- Stativ, Muffe
- große Klammer
- Kerze, an einem langen Stab befestigt
- Standzylinder, 2000 mL

Chemikalien:
- Wasserstoff
 CAS-Nr.: 1333-74-0
 Gefahr H220, H280
 P210, P377, P381, P403

Durchführung:
Ein Glas-Zylinder wird mit der Öffnung nach unten in ein Stativ gespannt und mit Wasserstoff befüllt. Auf Stand-Sicherheit achten!
Stativ-Fuß mit einem wassergefüllten Becherglas beschweren.
Von unten wird nun eine brennende Kerze in den Zylinder einge führt.
Zieht man sie ganz langsam wieder nach unten heraus, dann man sie wieder entzünden.

Beobachtung:
Kerze erlischt.

Deutung:
Wasserstoff unterhält die Verbrennung nicht

Entsorgung:

Quelle:
Allgemeingut

Diskussion:
Begründen Sie, warum Wasserstoff die Verbrennung nicht unterhält.
6.6 Reaktion von Kohlenstoffdioxid mit Magnesium

Zeitbedarf: 5 Minuten, Lehrende, n
Kompetenz/Ziel:
F: Affinität als Bindungsfähigkeit, Reduktionsvermögen, Konkurrenz-Reaktion

Material:
- Stand-Zylinder, 250 mL
- Tiegel-Zange
- Feuerzeug
- Glimm-Span
- Magnesium-Band
 CAS-Nr.: 7439-95-4

Chemikalien:
- Kohlenstoffdioxid
 CAS-Nr.: 124-38-9
 Achtung
 H280
 P403
- Magnesium-Band
 CAS-Nr.: 7439-95-4
 Gefahr
 H228, H261
 P223, P210, P231+232, P370+378, P422

Durchführung:
Boden des Zylinders ca. 3 cm hoch mit Wasser bedecken, dann mit Kohlenstoffdioxid füllen (Test des Füll-Zustandes?). Ca. 5 cm Magnesium-Band anzünden und mit der Tiegel-Zange in den Zylinder halten.

Beobachtung:
Es findet eine Reaktion unter Spritzen und lautem Knistern statt. Es setzen sich schwarze Flocken, dunkle Spritzer und ein weißer Belag an der Zylinder-Wand ab.

Deutung:
Magnesium hat zu Sauerstoff eine höhere Affinität als Kohlenstoff:

\[\text{2Mg} + \text{CO}_2 \rightarrow \text{C} + \text{2MgO} \]

Bei den dunklen Spritzern handelt es sich um Rest-Magnesium, nur die Flocken sind Kohlenstoff. Der weiße Belag ist Magnesiumoxid.

Entsorgung:
E3

Quelle:

Diskussion:
- Gelegentlich wird eine Variante mit Natrium beschrieben.
- „Konkurrenz“ zweier Stoffe A (Mg) und B (C) um den Reaktionspartner Stoff C (O)

Literatur:
6.7 Reaktion von Aluminium mit Brom B/D!

Zeitbedarf: 10 Minuten, Lehrende, n
Kompetenz/Ziel:
F: Synthese / Große Affinität von Aluminium und Brom
K: Aktivierungsenergie und Energie-Profil

Material:
- Reagenzglas, d= 30 mm
- Stativ, Muffe, Klammer
- Becherglas, 400 mL
- Kolbenhub-Pipette, 1 mL
- IR-Thermometer
- Löschsand

Chemikalien:
- Aluminium-Folie
- Brom
 CAS-Nr.: 7726-95-6
- VE-Wasser
- Natriumhydroxid
 CAS-Nr.: 1310-73-2

Durchführung:
In das Reagenzglas ca. 1-2 mL Brom mit der Kolbenhub-Pipette einfüllen. Vorsicht: Brom hat eine sehr hohe Dichte! Dann 1-2 etwa erbsengroße Kügelchen Alu-Folie hineinwerfen. Nach ca. 10 Sekunden beginnt eine heftige Reaktion. Für das Ziel Energie-Beteiligung kann da IR-Thermometer aus 5-10 cm Entfernung vorsichtig auf die Reaktionszone gerichtet werden.

Beobachtung 1:
Es entsteht ein weißes, pulvriges Produkt, das sich oben an der Reagenzglas-Wand ablagert. Das Thermometer zeigt eine Temperatur-Erhöhung an.

Deutung 1:
\[2\text{Al} + 3\text{Br}_2 \rightarrow 3\text{AlBr}_3 \quad \text{dH}<0 \]
(wasserfrei)

Durchführung 2:
Das Produkt am Reagenzglas-Rand mit wenig Wasser anspritzen und lauschen.

Beobachtung 2:
Ein Zischen ist zu vernehmen.

Deutung 2:
\[\text{AlBr}_3 + 3\text{H}_2\text{O} \rightarrow \text{Al(OH)}_3 + 3\text{HBr} \quad \text{dH}<0 \]

Energie-Profil?

Entsorgung: E15, mit Natriumhydroxid: E2

Didaktischer Hinweis:
ggf. Abdunkelung; Alu-Folie ca. 3*5 cm um Bleistift wickeln und als Röhrchen einwerfen.
6.8 Rosten

Zeitbedarf: 3 Minuten ansetzen + 1 Woche Wartezeit + Auswerten, Lernende, n

Kompetenz/Ziel:
F: Stille Oxidation, fördernde Faktoren
E: Ableitung günstiger Reaktionsbedingungen aus chemischer Gleichung
B: Bedingungen zur Vermeidung von Korrosion

Material:
- 3 Reagenzgläser, d= 18 mm
- Stopfen, für Reagenzglas

Chemikalien:
- VE-Wasser
- 3 Eisen-Nagel

Aufgabe:
Welche Bedingungen fördern das Rosten?

Durchführung:
Reagenzglas 1: mit Eisen-Nagel
Reagenzglas 2: mit Eisen-Nagel und Wasser (Wasser bis knapp unter den Rand einfüllen!), mit Stopfen verschließen

Beobachtung:
Beobachtung nach 1, 2 und 3 Wochen. Bestes Rost-Ergebnis in Reagenzglas 3

Auswertung:

\[
\begin{align*}
\text{Fe} & \rightarrow \text{Fe}^{2+} + 2e^- \\
2\text{H}_3\text{O}^+ + 2e^- & \rightarrow \text{H}_2 + \text{H}_2\text{O} \\
\rightarrow \text{Säure nötig} \\
\text{Fe} + 2\text{H}_3\text{O}^+ & \rightarrow \text{Fe}^{2+} + \text{H}_2 + 2\text{H}_2\text{O} \quad *4 \\
\text{Fe}^{2+} & \rightarrow \text{Fe}^{3+} + e^- \quad *4 \\
\text{O}_2 + 4e^- + 2\text{H}_2\text{O} & \rightarrow 4\text{OH}^- \\
\rightarrow \text{Sauerstoff nötig} \\
4\text{Fe}^{2+} + \text{O}_2 + \text{H}_2\text{O} & \rightarrow 4\text{Fe}^{3+} + \text{OH}^- \quad 1x \\
2\text{H}_2\text{O} & \rightarrow \text{H}_3\text{O}^+ + \text{OH}^- \quad 8x \\
\rightarrow \text{Wasser nötig} \\
4\text{Fe}^{2+} + 8\text{H}_2\text{O}^+ + 4\text{e}^{2+} + \text{O}_2 + 18\text{H}_2\text{O} & \rightarrow 4\text{Fe}^{2+} + 4\text{Fe(OH)}_3 + 4\text{H}_2 + 8\text{H}_2\text{O}^+ + 8\text{H}_2\text{O} \\
4\text{Fe}^{2+} + \text{O}_2 + 10\text{H}_2\text{O} & \rightarrow 4\text{FeOH}_3 + 4\text{H}_2 \\
2\text{Fe(OH)}_3 & \rightarrow \text{Fe}_2\text{O}_3(\text{H}_2\text{O}) + 2\text{H}_2\text{O} \\
\end{align*}
\]

Entsorgung: Eisen-Nägel säubern und wiederverwenden

Quelle: Allgemeingut, verändert durch Didaktik der Chemie, Universität Bayreuth

Diskussion:
6.9 Mehlstaub-Explosion B/D!

Zeitbedarf: 5 Minuten, Lehrende, 1

Kompetenz/Ziel:
F: Abhängigkeit der Reaktionsgeschwindigkeit von der Oberfläche, Zerteilungsgrad
B: Feuergefährlichkeit von Stäuben, Unfall-Gefahren

Material:
- Experimentiersatz Plexiglas-Silo*
- Feuerzeug

Chemikalien:
- Stärke, ggf. rieselfähig
- eventuell Bärlappsporen

Vorbereitung:
Stärke über Nacht bei 100°C im Trocken-Schrank vortrocknen.

Durchführung:
Einen Spatel Stärke an die Stelle wie in der Skizze bezeichnet bringen.
WICHTIG: Trichter-Rand und Kerzenflamme müssen auf gleicher Höhe sein.
Stärke kann ruhig durch den Trichter in den Schlauch rutschen (ggf. rütteln!). Deckel fest aufsetzen. Kräftig und stoßartig Hand-Pumpe drücken. Mund geöffnet halten, um Druck-Ausgleich in den Ohren zu gewährleisen!!!!

Beobachtung:
Stärke verbrennt explosionsartig

Deutung:
Die hohe Kontakt-Fläche zum Sauerstoff der Luft in Verbindung mit der exothermen Reaktion führt zu schlagartiger Freisetzung von Wärme an die umgebende Luft. Diese dehnt sich aus. Zusammen mit den Verbrennungsgasen CO$_2$ und H$_2$O(g) führt das zur Explosion.

Entsorgung:
- Quelle:

Diskussion:
Unfälle in Mühlen, Säge-Mühlen, Schleifereien und Kohle-Bergwerken

Didaktischer Hinweis:
Der Versuch funktioniert auch mit Kaffee-Weißer, mit Bärlappsporen besser und sicherer, ist dann aber von den Sachbezügen weiter weg bzw. auch weniger überraschend.

WWW:
http://www.quarks.de/explosionsgefahren/05.htm - Bilder und Real-Info
6.10 Pyrophores Eisen

Zeitbedarf: 10 Minuten, Lernende, n
Kompetenz/Ziel:
F: Analyse und Synthese, spontane Oxidation

Material:
- Reagenzglas, d= 18 mm
- Reagenzglas-Klammer
- Brenner, Feuerzeug
- Pulver-Spatel
- Alu-Folie, als Unterlage

Chemikalien:
- Eisen(II)-oxalat-Dihydrat
 CAS-Nr.: 6047-25-2

Achtung
H302, H312
P280, P301, P312, P363, P501

Durchführung:

Ins Reagenzglas ca. 1 cm hoch Eisenoxalat geben und unter Schütteln in der Brenner-Flamme erwärmen. Beobachtung?
Wenn die Reaktion beendet ist, Produkt ca. 5 Minuten abkühlen lassen (didaktische Gründe), dann aus der Höhe auf Alu-Folie ca. 40*80 cm ausgießen. Beobachtung?

Beobachtung 1:
Es entweicht ein gasförmiges Produkt. Ggf. schlägt sich Feuchtigkeit am Reagenzglas-Rand ab. Sei sollte durch Erhitzen entfernt werden.

Beobachtung 2:
Das dunkle Reaktionsprodukt brennt spontan an der Luft.

Deutung:

\[
\begin{align*}
Fe(OOCCOO) & \rightarrow Fe + CO_2 \\
\text{ (gelb)} & \text{ (schwarz)} \\
4Fe+3O_2 & \rightarrow 2Fe_2O_3 \\
\text{ (rotbraun)}
\end{align*}
\]

Entsorgung:

E3

Quelle:

Diskussion:
Analyse ohne Gift. Produkte. Auf einfache Art und Weise pyrophores Eisen hergestellt!

WWW:
http://www.chemieunterricht.de/dc2/auto/a-v-ko02.htm - Hintergrund
6.11 Elektrochemische Korrosion B/D!

Zeitbedarf: 20 Minuten + 2-7 Tage Wartezeit, Lernende, n

Kompetenz/Ziel:
F: Korrosion, Spannungsreihe, Redox-Potential, edle und unedle Metalle
B: Förderung der Korrosion durch Lokalelementbildung.

Material:
- Glas-Stab
- 2 Bechergläser, 100 mL

Chemikalien:
- Eisen-Nagel
- Kupfer-Draht
d= 0,5 mm, L~4 cm, blank
- Kaliumhexacyanoferrat(II)-Lösung
c= 0,1 mol/L
 CAS-Nr.: 13943-58-3
- Gelatine
 CAS-Nr.: 9000-70-8
- Pasteur-Pipette, Hütchen
- Petrischale, d= 90 mm
- Phenolphthalein-Lösung
ethanolisch (Indikator)
w= 1%
 CAS-Nr.: 77-09-8

Durchführung:

2,5 g Gelatine in 40 mL Wasser ca. 10 Minuten quellen lassen. 40 mL Wasser zum Sieden erhitzen, dann zur Gelatine geben und diese unter Rühren darin auflösen. 1 mL Phenolphthalein-Lösung und 10 Tropfen der Blutlaugensalz-Lösung zugeben. Der Ansatz reicht für drei Ansätze.

Beobachtung:
Um das Kupfer erscheint die Farbe des Phenolphtheleins in basischer Lösung, um den restlichen Teil des Nagels die des Berliner Blau.

Deutung:
Es sind Hydroxid-Anionen und Eisen(II)-Kationen entstanden:

\[
\text{Fe} \rightarrow \text{Fe}^{2+} + 2e^- \\
2\text{H}_2\text{O} + 2e^- \rightarrow 2\text{OH}^- + \text{H}_2 \\
bzw.
\text{O}_2 + 4e^- + 2\text{H}_2\text{O} \rightarrow 4\text{OH}^-
\]

Entsorgung: E3

Quelle:

Didaktischer Hinweis:
Variante ohne Kupfer: beide Farben erscheinen ebenfalls, die Stellen erscheinen aber statistisch verteilt.

6.12 Herstellung von Sicherheitszündhölzern D!

Zeitbedarf: 30 Minuten + 1 Tag Trockenzeit; Lernende
Kompetenz/Ziel:
F: Rolle von leicht entzündlichen Stoffen und Oxidationsmitteln
B: Anforderungen an ein Alltagsprodukt

Material:
- Mörser, Pistill
- Magnetruhrer, heizbar
- Glas-Stab
- Becherglas, 50 mL
- Becherglas, 25 mL
- Spatel
- kleiner Pinsel

Chemikalien:
- Gelatine
 CAS-Nr.: 9000-70-8
- Mangan(IV)-oxid
 CAS-Nr.: 1313-13-9
- Schwefel-Pulver
 CAS-Nr.: 7704-34-9
- Kaliumchlorat
 CAS-Nr.: 3811-04-9
- Phosphor, rot
 CAS-Nr.: 7723-14-0

Durchführung:
Köpfchen: 3 g Kaliumchlorat im Mörser gut zerkleinern (verreiben), dann 0,35 g Schwefel und 0,15 g Mangan(IV)-oxid hinzusieben und gut mischen. 0,6 g Gelatine mit wenig Wasser im 50 mL Becherglas etwas quellen lassen, dann auf dem Magnetruhrer durch vorsichtiges Erwärmen unter Rühren mit dem Glas-Stab schmelzen und mit dem Gemisch zu einem Brei verrühren. Es muss sich eine Viskosität ergeben, die Köpfchen-Bildung erlaubt, also nicht krümelnd und nicht fließend.

Fertigung: Zündkopf aus obigem Brei aufbringen und mind. 1 Tag trocknen lassen. In Styropor-Block einstecken.

Reibe-Streifen: 100 mg roter Phosphor wird in ca. 5 mL Wasser aufgeschlämmt (Becherglas 25 mL). Ein Pinsel-Strich davon wird auf dem Papp-Streifen über die gesamte Länge dünn aufgetragen. Über Nacht trocknen lassen.

Beobachtung:
Die Zündhölzer lassen sich an einer käuflichen oder an der selbst hergestellten Reibfläche zünden.
Glimm-Späne und Zahnstocher sind aus Hart-Holz und brennen nicht immer leicht an.
Deutung:
Rolle der Komponenten:
- Köpfchen = Initial-Zünder
- Holz = Brennmaterial
- Kaliumchlorat = Oxidationsmittel
- Schwefel = Reduktionsmittel
- Gelatine = Bindemittel
- Mangan(IV)-oxid = Katalysator
- Phosphat/Paraffin = sichert gleichmäßiges Abbrennen des Holzes (in dieser Anleitung nicht verwendet)

Vergleich mit ersten Zündhölzern:
Köpfchen aus weißem Phosphor und Kaliumchlorat oder weißem Phosphor und Blei(IV)-oxid

Gefahren?

Entsorgung:
E8; B2

Quelle:
Braun, Th. M.; Kraemer, S.: Zündhölzer, PdN-Ch. 3; 1997, S. 44

Diskussion:
„Kracher“ mit Streichhölzchen
6.13 Licht-Induzierte Redox-Reaktion

Zeitbedarf: 15 Minuten, Lehrende, n
Kompetenz/Ziel:
F: Photographischer Prozess: Licht-Reaktion, E: Licht-Induzierte Redox-Reaktion

Material:
- Hand-Brenner
- Tiegel-Zange
- 2 Reagenzgläser, d= 18 mm
- Stopfen, für Reagenzglas, d= 18 mm

Chemikalien:
- Silbernitrat-Lösung
c= 0,1mol/L
CAS-Nr.: 7761-88-8
- Natriumchlorid-Lösung
c= 1mol/L
CAS-Nr.: 7647-14-5
- VE-Wasser
- Magnesium-Band
CAS-Nr.: 7439-95-4
- Reagenzglas-Gestell
- 2 Pasteur-Pipetten, Hüttchen
- Alu-Folie

Vorbereitung:
Salz-Lösungen herstellen, Konzentrationen müssen nur sehr grob eingehalten werden.

Durchführung 1:
In einem der Reagenzgläser ca. 1 mL Silbernitrat-Lösung auf 10 mL verdünnen, dann mit 1 mL Natriumchlorid-Lösung versetzen.

Beobachtung 1:
Es entsteht ein weißer Niederschlag

Deutung 1:
Da die Löslichkeit von Silberchlorid sehr gering ist, entsteht dieses Salz und fällt in Form feinster Flöckchen aus.

Durchführung 2:
Die Aufschlämmung gleichmäßig auf die beiden Reagenzgläser aufteilen, eines im Bereich der Flüssigkeit in Alu-Folie einwickeln und beide in das Gestell nebeneinanderstellen. Ein weiteres Stück Alu-Folie als „feuerfeste“ Unterlage vor das Reagenzglas-Gestell legen. Dann ca. 5-7cm Magnesium-Band mit der Tiegel-Zange anfassen, im Brenner anzünden und neben den Reagenzgläsern abbrennen. VORSICHT: nicht direkt in die Flamme schauen!
Reaktionsprodukt auf der Unterlage ablegen, später einwickeln und entsorgen. Geschütztes Reagenzglas von der Alu-Folie befreien und die Farbe des Inhaltes mit dem ungeschützten vergleichen.

Beobachtung 2:
Der weiße Niederschlag im ungeschützten Reagenzglas hat sich nach grau verfärbt.

Deutung 2:

\[2\text{AgX} \rightarrow 2\text{Ag} + \text{X}_2 \quad \text{unter Lichteinwirkung } h^*v \]

Entsorgung: Magnesiumoxid in den Hausmüll. Lösungen: B1

Quelle:
Didaktik der Chemie, Universität Bayreuth
Diskussion: Die Reaktion funktioniert mit Silberbromid nach demselben Prinzip nicht
WWW: http://www.seilnacht.com/Lexikon/AgCl.htm
6.14 Benzin-Explosion

Zeitbedarf: 10 Minuten, Lernende, 1
Kompetenz/Ziel:
F: Explosion als schnelle Oxidation, Rolle des Luft-Sauerstoffs
B: Ermittlung der Explosionsgrenzen, Unfall-Gefahren

Material:
- Pasteur-Pipetten, Hütenchen
- Haar-Trockner

Chemikalien:
- Petrolether SDB 40-60°C
 CAS-Nr.: 64742-49-0
- Petrolether SDB 80-100°C
 CAS-Nr.: 64742-49-0

Durchführung 1:

Beobachtung 1:
Es tritt deine Reaktion ein.

Durchführung 2:
Der geschlossene Plexiglas-Zylinder wird mehrmals umgedreht, dann wird erneut gezündet.

Beobachtung 2:
Das Petrolether-Luft-Gemisch explodiert, der Deckel wird weggeschleudert.

Durchführung 3:
wie Durchführung 2, aber mit anderen Petrolether-Mengen (notieren!)

Beobachtung 3:
Die Heftigkeit der Explosion wird notiert.

Durchführung 4:
Wie Durchführung 2 aber mit Petrolether SDB 80-100°C

Beobachtung 4:
Die Heftigkeit der Explosion wird notiert.

Deutung:
Erst bei Vermischung der Benzin-Dämpfe mit Luft tritt eine Explosion ein. Mit geringeren oder größeren Benzin-Mengen ist sie weniger heftig, ebenso mit dem höher siedenden Benzin.

Entsorgung:

Diskussion:
Zu magere oder zu fette Gemische im Otto-Motor

Didaktischer Hinweis:
Die geringere Explosionsneigung des benzinreicheren Gemisches überrascht Lernende häufig und zeigt die Bedeutung des Luft-Sauerstoffs für die Reaktion.

WWW:
Verschiedene Flash- oder GIF-Animationen zum Otto- oder Diesel-Motor
6.15 Knalldose

Zeitbedarf: ca. 2 Minuten, Lehrender, bzw. ca. 10-15 als Versuchsreihe, Lernende
Kompetenz/Ziel:
F = Verbrennungsreaktion von Alkanen, Explosion als schnelle Oxidation, Rolle des Luftsaurenstoffs
E = Planung einer Versuchsreihe
K = Entwickeln der Versuchsreihe in der Gruppe und Protokollieren der Ergebnisse

Material:
- Chips-Dose (Pringles geht gut) mit Deckel
- Siedesteinchen
- Glimmspan
- Feuerzeug
- Dicker Nagel
- Pasteur-Pipette
- Pipetten-Hütchen
- Hammer
- Teelicht

Chemikalien:
- Petrolether
 SDB 40-60°C
 CAS-Nr.: 64742-49-0
 Gefahr
 H225, H304, H315, H336, H361f, H373, H 411
 P201, P210, P301+310, P331, P370+378, P501

Vorbereitung:
Mit dem Nagel seitlich, ca. 1cm über dem Boden der Dose ein ca. 4x4mm großes Loch durchstechen (ggf. Hammer verwenden).

Durchführung 1:
Das Teelicht anzünden und den Glimmspan griffbereit legen.
Den Glimmspan anzünden, die Dose auf den Tisch stellen und die Flamme an das Loch halten.
Wenn der Versuch einige Male hintereinander durchgeführt werden soll, dann muss die Dose nach dem Versuch geöffnet werden und neu belüftet werden (im Raum hin und her schwenken), so dass die Verbrennungsprodukte entweichen und neuer Sauerstoff in die Dose gelangt!

Dieser Versuch kann auch zur Einführung ins Stöchiometrische Rechnen verwendet werden. Hierfür sollen die Lernenden eine Versuchsreihe planen, die zeigen soll, dass die Reaktion bei einem bestimmten Verhältnis von Petrolether zu Luft heftiger abläuft als bei anderen Mengen an Petrolether. Es wird eine Tabelle angelegt, bei der die Heftigkeit der Reaktion (z.B. Lautstärke, Art des Knalls, Flugweite des Deckels) in Abhängigkeit der Tropfenanzahl (zwischen 2 und 14) eingetragen wird. Das Ergebnis wird anschließend in einem Diagramm dargestellt, das zeigt, dass die optimale Menge an Petrolether für das Volumen der Dose bei ca. 8 Tropfen liegt.
Beobachtung 1:
In der Dose findet eine Explosion mit lautem Knall statt, die den Deckel weit durch die Luft schießt. Teils ist auch eine kleine Stickflamme aus dem Loch beobachtbar (Vor allem bei größeren Tropfenzahlen als 8).

Deutung 1:

Diskussion:

Der Versuch stellt die kostengünstige Variante der Versuchsapparatur Plexiglas Silo in Versuch 6.14 dar und lässt in der Form auch Versuchsreihen in arbeitsteiliger oder arbeitsgleicher Gruppenarbeit mit der ganzen Klasse zu.

Entsorgung:

Quelle:
Materialsammlung Waltraud Habelitz-Tkotz, abgeändert durch P. Oberpaul
7. Chemische Bindung / Termin: 16.06.2020

7.1 Züchten von Kristallen (deutsch) D!

Zeitbedarf: 15 Minuten + verteilte Pflegezeiten, Lernende Kompetenz/Ziel:
E: Entstehung regelmäßiger Formen in der Natur

Material:
- Becherglas, 600 mL, weit
- 2 Bechergläser, 150 mL, hoch
- Magnetrührer, heizbar
- Magnetrührstäbchen
- Löffel-Spatel
- Pinzette
- Stativ, Muffe, Klammer

Chemikalien:
- Kaliumaluminiumsulfat
 CAS-Nr.: 7784-24-9
 KAl(SO\(_4\))\(_2\)\(\cdot\)12H\(_2\)O
 L= 110 g/L

- Kaliumchromsulfat
 CAS.: 7788-99-0
 KCr(SO\(_4\))\(_2\)\(\cdot\)12H\(_2\)O
 L= 250 g/L

- Kupfer(II)-sulfat-Pentahydrat
 CAS-Nr.: 7758-99-8
 CuSO\(_4\)\(\cdot\)5H\(_2\)O
 L= 175 g/L

Achtung
- H315, H319
- P302+P352, P305+P351+P338

Durchführung:
Herstellen gesättigter Lösungen (für eine 4er-Gruppe):
In das große Becherglas 500 mL VE-Wasser füllen, auf ca. 40°C erwärmen und so viel Substanz darin lösen wie möglich; dauert u. U. 60 Minuten (der Wert für die Löslichkeit ist eine Orientierung). Abkühlen lassen. Ggf. filtrieren. Dann Lösung ca. 1 Woche stehen lassen. **Erst wenn sich ein Bodenkörper gebildet hat, ist die Lösung darüber gesättigt!**

Impfkristalle:
In die Petrischale ca. 0,5-1 cm hoch Lösung füllen und offenstehen lassen. Von den Kristallen am Boden einen schönen aussuchen und als Impfkristall verwenden.

Wachstum:
Den Impfkristall an einen Faden binden; das andere Ende so am Holzstäbchen befestigen, dass der Kristall, ins Becherglas gehängt, ca. 2 cm über dem Boden schwebt (denken Sie daran, dass der Kristall groß und schwer werden soll!). Ca. 100 mL Lösung eingießen. An einen ruhigen, nicht zu warmen (oder temperaturveränderlichen) und zu trockenen Ort stellen (schlecht: Abzug, Fensterbrett; besser: in einen Schrank oder abgedeckt auf den Schrank). Wichtig: Sollte es nötig werden, Lösung nachzubereiten, so sollten Sie sich immer durch den Bodenkörper überzeugen lassen, dass die Lösung wirklich gesättigt ist, sonst kann der schöne Kristall ziemlich schnell wieder verschwinden oder „angefressen“ aussehen! Welch ein Jammer!
Schutz:

Beobachtung:
In 4-6 Wochen erhält man Kristalle mit 2-3 cm Kantenlänge!

Entsorgung:
Nicht benötigte Lösungen eindampfen lassen und Salze wiederverwenden.

Quelle:
Allgemeingut

Diskussion:

Didaktischer Hinweis:
Gut kristallisieren noch: die beiden Blutlaugen-Salze (langsam; rote Säulen mit Spitzen an den Enden bzw. gelbe viereckige Plättchen), Ammoniumaluminiumsulfat \(\text{NH}_4\text{Al(SO}_4\text{)}_2\cdot12\text{H}_2\text{O} \) (farblose Oktaeder, „Deo-Kristall“), Natriumdihydrogenphosphat \(\text{NaH}_2\text{PO}_4\cdot2\text{H}_2\text{O} \) (farblose Oktaeder).

Schlecht kristallisieren aus wässriger Lösung unter den geschilderten Bedingungen: Kochsalz, Saccharose.

VARIANTE 1: Schleifen Sie von einem nicht so gut geratenen Kristall eine Kante oder eine Spitze mit Sandpapier ab oder bohren Sie vorsichtig ein Loch und hängen Sie ihn wieder in die Lösung. Es ist überraschend, was passiert!

VARIANTE 3: Mit Zusatz von Kalilauge oder Natronlauge (\(w=1\% \)) lassen sich Alaune in den kubischen Habitus zwingen, Kochsalz durch Harnstoff oder Glycin in den oktaedrischen. Warum das funktioniert, ist ungeklärt.

WWW:
http://www.chemieunterricht.de/dc2/kristalle/dc2kt_32.htm
7.2 Growing of crystals (englisch)

Need of Time: 15 minutes + growing time
Goals:
E: formation of periodic structures in nature
K: Engl. Versuchsanleitung

Material:
- beaker, 600 mL
- 2 beakers, 150 mL
- wooden rods (pencils)
- thread (polyester or very thin fishing line)
- tweezers
- (sandpaper)
- Very much patience!!!
- hot plate stirrer
- stirring bar
- spatula with spoon
- seed crystals or petri dish
- superglue
- (Zapon varnish, paint brush)

Chemicals:
- potassium aluminum sulfate
 CAS-Nr.: 7784-24-9
 KAl(SO₄)₂·12H₂O
 L= 110 g/L
- Potassium chromium sulfate
 AS-Nr.: 7788-99-0
 KCr(SO₄)₂·12H₂O
 L= 250 g/L
- Copper (II) sulfate pentahydrate
 CAS-Nr.: 7758-99-8
 CuSO₄·5H₂O
 L= 317 g/L

Warning
H315, H319
P302+P352, P305+P351+P338

Procedure:
Producing the saturated solutions: Fill into the beaker 600 mL, 500 mL of dist. water. While heating to 105°F try to dissolve as much of the substance as possible. Let the solution cool down. It will be saturated no sooner as you can see a solid precipitate at the bottom at room temperature. If not so, leave it for evaporation for about one week. Decant the saturated solution in a new beaker or bottle.

How to get seed crystals: Fill approx. 10 mL of your solution into the petri dish. Leave it for evaporation without lid. After a few days: select one of the crystals (the most beautiful one) from the bottom and use it as a seed crystal.

Growth: Attach the seed crystals to the thread (try superglue); bind the other end to the wooden rod and fix it about 2 cm above the bottom of the beaker (Remember: you expect the crystal to grow large). Hook the crystal in the saturated solution. Place it at a quiet but not too warm location (bad: flue, windowsill; good: in a cupboard, or covered on a cupboard).

Important: If it's necessary to re-add solution, you must make sure that the solution really is saturated (look for solid precipitate at the bottom). Otherwise the nice crystal could disappear (dissolve again). What a misery!

Protection: Some conditions (e.g. very young students, corrosion) could make it necessary to cover the crystal with varnish. Here Zapon vanish is needed. It is soluble in acetone.

Observation:
After 4 to 6 (10) weeks you will get crystals with an edge length of 2-3 cm.
Disposal:
Evaporate solutions, which are not needed any more. Salt can be used again.

Source:
Common

Discussion:

Notes:
Fast crystallization:
- both prussiates of potassium (slow growth; red columns with peaks at the edges respectively yellow square pads)
- NH₄Al(SO₄)₂·12H₂O (colorless octahedrons, deodorant crystal)
- NaH₂PO₄·2H₂O (colorless octahedrons)

Slow, tricky crystallization in aqueous solution under normal conditions:
- common salt
- sucrose

Options:
- Sand a crystal at one ridge or drill a hole in one face. Hook the crystal in the solution again. It is surprising what happens!
- First, let grow a crystal of chromium alum, and then hook it in a solution of aluminum alum. This way you get a chimera. Groups of students may try different concentrations (from 1:10 Cr:Al to 1:20, 1:50, 1:200); the results will be different shades of Bordeaux color.
- After adding 1% KOH or NaOH, alums will form a cubic habitus, common salt with urea or glycine will form an octahedral habitus. The reasons for this phenomenon are not well understood yet.

WWW:
http://www.chemieunterricht.de/dc2/kristalle/dc2kt_32.htm
http://www.crystalgrowing.com/recipes/sugar/sugar.htm
7.3 Leitfähigkeit von Lösungen B/D!

Zeitbedarf: 10 Minuten, Lernende, n
Kompetenz/Ziel:
F: Nachweis von Salzen als Ionen-Verbindung
E: Test auf Ionen-Verbindungen, Reinheitstest für Wasser

Material:
- Becherglas, 250 mL
- 2 Kohle-Elektroden
- Löffel-Spatel
- Elektroden-Abstandplatte
- Labor-Netzgerät
- 4 Kabel, blau + rot
- Glüh-Lämpchen, 6 V
- Multimeter
- Kupfer(II)-sulfat-Pentahydrat
 CAS-Nr.: 7758-99-8
 Achtung: H302, H315, H319, H410
 P273, P302+352, P305+351+338

Chemikalien:
- Harnstoff
 CAS-Nr.: 57-13-6
- Glucose (Traubenzucker)
 CAS-Nr.: 50-99-7
- VE-Wasser
- Natriumchlorid
 Kochsalz
 CAS-Nr.: 7647-14-5

Durchführung:
Jede Gruppe stellt eine der Lösungen aus 1 Löffel Substanz in 200 mL Wasser her.
Elektroden in die Lösung eintauchen und Strom-Kreis nach Skizze aufbauen.
Der Spannungsstellknopf muss Anfangs in Null-Stellung stehen. Dann Netz-Gerät einschalten und langsam bis max. 6 V (Wechsel-Spannung) hochregeln.

Beobachtung:
Bei nicht leuchtender Lampe ist keine Leitfähigkeit gegeben.

Deutung:
Bei den kristallinen Stoffen Kochsalz und Kupfersulfat handelt es sich um ionische, bei den Stoffen Harnstoff und Traubenzucker um nichtionische Kristalle (Gitter).

Didaktischer Hinweis:
Dieser Versuchsaufbau kann auch in der Microscale-Variante durchgeführt werden. Der Aufbau erfolgt analog dem Aufbau in Versuch 3.7, Eigenschaften von Ionenverbindungen (Salzen), die vier Lösungen werden in je eine Vertiefung der Zellkulturplatte getropft. Der Lehrende kann die Lösungen im Vorfeld vorbereiten und an alle arbeitsteiligen Gruppen ausgeben.

Entsorgung:
E8, B1

Quelle:
Allgemeingut

Diskussion:
Aussage über Pestizide? Warum wird Wechsel-Spannung verwendet?

Hintergrund:
Quantitative Leitfähigkeitsbestimmung dient dem Abschätzen der Salz-Fracht von Abwässern oder Flüssen.
7.4 Ionen-Wanderung B/D!

Zeitbedarf: 30 Minuten, Lehrende, 1

Kompetenz/Ziel:
E: Abhängigkeit der Ionen-Wanderung von der Ionen-Ladung, Elektrophorese als Trenn-Methode für geladene Teilchen

Material:
- 2 Stative, Muffen, Klammern
- Becherglas, 25 mL
- 2 Krokodil-Klemmen, rot + schwarz
- 2 Kabel, blau + rot
- Labor-Netzgerät
- Pinzette
- Schere
- Pasteur-Pipette, Hüttchen
- Multimeter
- Silberblech-Streifen
- Baumwoll-Faden
- DC-Folie, Alox

Chemikalien:
- Kaliumnitrat-Lösung
c= 1 mol/L
CAS-Nr.: 7757-79-1
- Kaliumpermanganat (s)
CAS-Nr.: 7722-64-7

Gefahr
H272, H302, H314, H410
P220, P273, P280, P305+P351+P338, P310, P501
- Kupfer(II)-sulfat-Lösung
c= 1 mol/L
CAS-Nr.: 7758-98-7

Achtung
H318, H411
P273, P280, P305+P351+P338

- Ammoniak-Lösung
w= 25% (konz.)
CAS-Nr.: 1336-21-6

Gefahr
H290, H314, H335, H400
P260, P273, P280, P301+P330+P331, P303+P361+P353, P305+P351+P338

Aufbau:
Zwei Silberleche ca. 4,5*2 cm werden der Länge nach gefaltet und über die Schmal-Seiten der DC-Folie (4*6 cm) geschoben.
Dann schließt man die Silber-Bleche mit Hilfe zweier Krokodil-Klemmen über die Bananen-Stecker an die Gleichspannungsbuchsen des Netzgerätes an. Zeigt das Amperemeter (bei eingeschaltetem Netzgerät, U= 30 V) einen Strom von I > 20 mA an, so ist der Strom-Kreis in Ordnung.

Durchführung:
In einer Petrischale werden 5-10 Kaliumpermanganat-Kristalle in ca. 3 mL Kupfersulfat-Lösung aufgelöst.

ABZUG: Geben Sie so viele Tropfen Ammoniak-Lösung dazu, bis sich der entstehende Niederschlag von Kupferhydroxid wieder auflöst und tränt man mit dem entstandenen Lösungsgemisch einen dicken Baumwoll-Faden, der höchstens so lang sein darf wie die DC-Folie breit ist. Danach legen Sie ihn mit Hilfe einer Pinzette quer über die DC-Folie und schaltet das

Beobachtung:
„Rote“ Ionen wandern zur Anode, „blaue“ zur Kathode

![Ionenwanderung](image)

Deutung 1:
Die Ionen in der roten Lösung wandern zur roten Klemme, weil sie farblich dazu passen, die Ionen der blauen Lösung zur schwarzen Klemme, weil es keine Blaue gibt 😊

Deutung 2:
Die entsprechenden Gegen-Ionen (K⁺ und SO₄⁻) sind farblos und treten deshalb optisch nicht in Erscheinung.

Entsorgung:
E8, B1

Quelle:

Diskussion:

WWW:
https://www.chemie.schule/k10/k10ab/ionenwanderung.htm - Variante mit U-Rohr; mit Arbeitsblatt
7.5 Leitfähigkeit von Salz-Schmelzen

Zeitbedarf: 10 Minuten, Lehrende, 1

Kompetenz/Ziel:
E: Ionen-Beweglichkeit in Feststoff und Schmelze, Salz-Schmelzen als Leiter 2. Klasse

Material:
- Reagenzglas, d=30 mm
- Stativ, Muffe, Klammer
- Brenner, Feuerzeug
- Multimeter (Amper-Meter)
- Labor-Netzgerät

Chemikalien:
Gemisch 1:1 aus
- Kaliumnitrat
 - CAS-Nr.: 7757-79-1
 - Achtung H272, P210, P221
- Natriumnitrat
 - CAS-Nr.: 7631-99-4
 - Achtung H272, H319, P220, P305+P351+P338

Durchführung:
Das Reagenzglas wird ca. 4 cm hoch mit dem Nitrat-Gemisch gefüllt und schräg ins Stativ gespannt. In das Gemisch ragen zwei lange Edelstahl-Elektroden, die mit den Wechselspannungspolen des Netzgerätes verbunden sind.
Strom-Kreis nach Skizze aufbauen. Das Glüh-Lämpchen dient als Sicherheitswiderstand, falls Sie mit den Elektroden Kurzschlüsse produzieren.
Am Netzgerät Spannung des Lämpchens auf 5V einstellen.

Beobachtung: Festes Salz (s) leitet nicht, die Salz-Schmelze (l) schon.

Deutung: In Schmelzen sind die Ionen beweglich und leiten den Strom.

Entsorgung: Schmelze erkalten lassen und wiederverwenden. Nach 2-5 Anwendungen wird das Reagenzglas springen, dann E3

Quelle: Allgemeingut

Diskussion: Eutektische Mischungen

Hintergrund: Eine Mischung von Natriumnitrat und Kaliumnitrat zeigt in einem breiten Bereich eutektische Eigenschaften:
\[Fp(\text{NaNO}_3) = 308^\circ C \quad Fp(\text{KNO}_3) = 339^\circ C \quad Fp(\text{Gem.}) = 236^\circ C! \]

Eigenbau: Elektroden können auch selbst gebaut werden:
Zwei starke Stahl-, besser Edelstahl-Drähte werden mit dem einen Ende in eine zweipolige Lüsterklemme geschraubt. Über einen der Drähte schiebt man ein Glas-Röhrenchen so, dass der Draht unten ca. 2 cm herausragt.
Am oberen Ende umwickelt man Glas-Rohr und den anderen Draht mit Isolier-Band. Auf der anderen Seite der Lüsterklemme kann ein isolierter Draht mit Bananen-Stecker angeschraubt werden oder die Elektroden-Drähte werden so weit durchgeschoben, dass man sie mit Krokodil-Klemmen fassen kann. In diesem Fall dient die Lüsterklemme (evtl. zwei Anschlüsse länger als benötigt) als Aufsatz für das Reagenzglas.
7.6 Leitfähigkeit von Metallen

Zeitbedarf: 5 Minuten, Lernende, n
Kompetenz/Ziel:
F: Temperatur-Abhängigkeit der elektrischen Leitfähigkeit
E: Zusammenhang Metall-Struktur und -Eigenschaften

Material:
- Brenner, Feuerzeug
- Labor-Netzgerät
- 3-4 Kabel, rot + blau
- Multimeter (Amperemeter)
- Halogen-Lämpchen, U= 12 V, P= 20-50 W
- Weiteres Lämpchen mit anderem Widerstand

Chemikalien:
- Eisen-Draht
 (bei der verw. Lampe: so abschneiden, dass er insgesamt einen Widerstand von R= 0,8Ohm hat)

Durchführung:

Beobachtung:
Der Strom wird bei Erhitzen kleiner / Lampe leuchtet schwächer.

Deutung:
Die thermische Bewegung der Atom-Rümpfe behindert den Elektronen-Fluss.

Entsorgung: -

Quelle:
Didaktik der Chemie, Universität Bayreuth

Diskussion:

Hintergrund:
Bei Konstantan kein Effekt zu beobachten, da dies eine spezielle Legierung ist, bei der gerade die Temperatur-Abhängigkeit minimiert werden soll. Aus Konstantan werden z. B. Shunt-Widerstände gefertigt.
7.7 Nachweis der Polarität von Lösemitteln B/D!

Zeitbedarf: 5 Minuten, Lehrende, 1

Kompetenz/Ziel:
F: Polare Bindung, Dipole, Löse-Eigenschaften
E: Erkennen polarer Stoffe, Zusammenhang Struktur-Eigenschaft

Material:
- 4 Stative, Büretten-Halter
- Becherglas, 1000 mL, weit

Chemikalien:
- VE-Wasser
- Diethylether („Ether“)
 CAS-Nr.: 60-29-7

Durchführung:
Büretten mit je einer der Flüssigkeiten (evtl. Tetrachlormethan, Lehrende!) füllen.
Dann die Büretten so ins Stativ spannen, dass zwischen Auslauf und Becherglas-Rand ca. 10 cm Platz ist.
Hahn so öffnen, dass die Flüssigkeit in einem feinen Strahl austritt.
In die Nähe dieses Strahls bringt man nun einen durch Reiben (Labor-Mantel, Pulli) elektrisch aufgeladenen Kunststoff-Stab.
Vergleichen Sie das Verhalten der Flüssigkeiten.

Beobachtung:
Wasser wird am stärksten, Tetrachlormethan gar nicht abgelenkt

Deutung:
Unterschiedliche Dipol-Stärke der Substanzen
Didaktischer Hinweis:
Die Lagerung und die Verwendung von Tetrachlormethan ist an Schulen mittlerweile verboten.
Die Verwendung von Heptan als unpolaren Stoff kann in Erwägung gezogen werden, um das Phänomen zu zeigen, jedoch ist die Erklärung des unpolaren Charakters dieser Moleküle nicht so offensichtlich wie bei Tetrachlormethan. Letztes könnte als Gedankenexperiment an das Real-Experiment angeschlossen und die Beobachtung begründet vorausgesagt werden.

Entsorgung:
Wiederverwenden oder Tetrachlormethan und Spiritus: E10, B3

Quelle:
Allgemeingut, verändert durch Didaktik der Chemie, Universität Bayreuth

Diskussion:
Tetrachlormethan mit polaren Bindungen aber als Molekül unpolar. Ether?
7.8 Gebundenes Wasser B/D!

Z**eitbedarf**: 10 Minuten, Lernende, n

Kompetenz/Ziel:

F: Kristall-Wasser ist schwach/komplex an Ionen gebundenes Wasser
E: Ionen ziehen Wasser-Dipole an und binden sie locker

Material:
- Reagenzglas, d= 18 mm
- Reagenzglas-Klammer
- Pasteur-Pipette, Hütchen

Chemikalien:
- Wassernachweis-Papier (Watesmo)
- Brenner, Feuerzeug
- Pulver-Spatel
- Kupfer(II)-sulfat-Pentahydrat
 CAS-Nr.: 7758-99-8
 Achtung
 H302, H315, H319, H410
 P273, P302+352, P305+351+338

Durchführung 1:
Kupfersulfat knapp 1 cm hoch in das Reagenzglas füllen und über dem Brenner vorsichtig erhitzen. Schütteln!

Beobachtung 1:
An der Reagenzglas-Wand oben entstehen Flüssigkeitströpfchen.

Deutung 1:
Bei der Flüssigkeit handelt es sich um Wasser. Als Beweis kann die Umfärbung des Test-Papiers von weiß nach blau dienen.

Durchführung 2:
Kupfersulfat weiter unter Schütteln kräftig erhitzen. Auch der Rest des Reagenzglases sollte erwärmt werden, damit alles Wasser verdampft.

Beobachtung 2:
Das Kupfersulfat verändert seine Farbe von blau nach blass-grünlich

Deutung 2:

Durchführung 3:
Zum hellen (wasserfreien) Kupfersulfat werden mit der Pasteur-Pipette 2 Tropfen Wasser gegeben.

Beobachtung 3:
Das Kupfersulfat verändert seine Farbe von blass-grünlich nach blau

Deutung 3:
Der Vorgang ist umkehrbar: Kupfersulfat nimmt wieder Wasser in das Kristall-Gefüge auf.

Entsorgung: B1

Quelle: Didaktik der Chemie, Universität Bayreuth

Diskussion: Aussage über Mischung und Reaktion; Einsatz von Differenzthermoanalyse

Hintergrund:
Die blaue Farbe stammt eigentlich nicht vom Kupfersulfat selbst, sondern vom Kupfer(II)-tetraquo-Komplex-Kation: \[\text{Cu}(\text{H}_2\text{O})_4]^{2+}\]
7.9 Herstellung eines Leitfähigkeitsprüfers

Zeitbedarf: 45 Minuten, Lehrende
Kompetenz/Ziel:
E: Aufbau einfacher elektronischer Schaltungen, Löten

Material:
- 2 Halter für AAA-Zellen mit Platinen-Anschluss
- 2*1,5 V-Zellen AAA
- ca. 25 cm 1,5cm²-Einzeladerdraht
- Spitz-Zange
- Folien-Stift, schwarz
- Streifen-Platine ca. 6*3,5 cm
- Löt-Kolben
- Leucht-Diode (LED) grün, 5G – 7100 mcd
- Schalt-Draht ca. 0,6*3 cm
- Seitenschneider-Zange

Chemikalien:
- Lötznit

Durchführung:
- Schalten Sie den Löt-Kolben an und stellen Sie ggf. die Temperatur auf ca. 350°C ein.
- Markieren Sie eine Schmal-Seite der Platine mit einem schwarzen Strich (Folien-Stift). Achten Sie darauf, dass dieser Strich immer oben zu liegen kommt (Reihe 1).
- Lötten Sie nun die beiden Draht-Brücken auf der Bauteile-Seite ein: Nr. 1 zwischen Bahn 10 und 12, Nr. 2 zwischen Bahn 5 und 11.
- Schneiden Sie sich dafür ein Stück Schalt-Draht auf die passende Länge von ca. 1,5 cm zu. Biegen Sie den Draht jeweils auf der Löt-Seite etwas um und löten Sie ihn fest.
- Drücken Sie die batterie-Halter in die Löscher der Reihen 4 und 5 bzw. 10 und 11. **BEACHTEN SIE DIE POLUNG!** geht etwas schwer! Fest löten!
- Nun wird die LED mit dem kürzeren Anschluss (Kathode) auf Bahn 2, mit dem längeren Anschluss (Anode) auf Bahn 4 gelötet.
- Zum Schluss die beiden Prüf-Elektroden: von einem 1,5 mm²-Einzeladerdraht (ca. 25cm) aus einem Strom-Kabel wird die Isolierung entfernt, dann geteilt und die Enden ca. 1 cm lang mit Löt-Zinn versehen. Auf der Platine ebenfalls ca. 1 cm der Bahn 2 bzw. 12 (**Vorsicht: Löt-Seite**) mit Löt-Zinn versehen. Dann Draht mit dem Lötznit-Ende auflegen, heiß machen und Löt-Zinn verschmelzen lassen. Fertig.

Beobachtung:
Test: Wann man die Beiden Elektroden aneinanderhält und die LED leuchtet, hat man alles richtiggemacht. Wenn nicht, dann nicht ☺
Siehe Tipps zur Fehler-Suche unten.
Quelle:
Idee unbekannt; Bauanleitung: W. Wagner, Didaktik der Chemie, Universität Bayreuth

Fehlersuche:
„Kalte Löt-Punkte“: Diese sind durch genügendes Erhitzen des zu lötenden Drahtes strikt zu vermeiden. Man erkennt sie an einer matten und nicht glatten Oberfläche. Sie leiten schlecht bis gar nicht und brechen sehr leicht ab.

Kurzschlüsse zwischen den Leiter-Bahnen: Sollte die LED nicht leuchten oder sollten ggf. die Batterien warm werden ist wahrscheinlich ein Kurzschluss auf der Platine vorhanden. In diesem Fall sollten nochmals alle Löt-Punkte auf die versehentliche Verbindung von zwei Bahnen überprüft werden.
8. Säuren und Basen / Termin: 23.06.2020

8.1 Indikatoren

Zeitbedarf: 10 Minuten, Lernende, 1

Kompetenz/Ziel:
F: Farben wichtiger Indikatoren im Sauren – Neutralen - Basischen
E: Definition und Eigenschaften eines Indikator-Farbstoffes

Material:
je Indikator:
• 3 Reagenzgläser, d= 30 mm

insgesamt:
• 3 Stopfen
• Reagenzglas-Gestelle
• 3 Mess-Pipetten 10 mL

Chemikalien:
• Methylorange-Lösung
 w= 0,1%
 CAS-Nr.: 547-58-0
• Methylrot-Lösung
 w= 0,1%
 CAS-Nr.: 493-52-7
• Blaukraut-Saft
• Bromthymolblau-Lösung
 w= 0,1%
 CAS-Nr.: 76-59-5
• Universal-Indikator (flüssig)

PEG

Durchführung:
Alle Reagenzgläser werden zu ca. 80% mit VE-Wasser gefüllt, dann je eines pro Indikator mit ca. 1 mL Salzsäure, mit ca. 1 mL Puffer und mit ca. 1 mL Natronlauge versetzt. Dann je ca. 10 Tropfen Indikator-Lösung zugeben. Überprüfen Sie die Farben.

Beobachtung:

<table>
<thead>
<tr>
<th>Indikator</th>
<th>Umschlagbereich</th>
<th>sauer</th>
<th>neutral</th>
<th>basisch</th>
</tr>
</thead>
<tbody>
<tr>
<td>Methylorange</td>
<td>3,0 – 4,4</td>
<td>rot</td>
<td>gelb-orange</td>
<td>gelb-orange</td>
</tr>
<tr>
<td>Methylrot</td>
<td>4,4 – 6,2</td>
<td>violett-rot</td>
<td>gelb-orange</td>
<td>gelb-orange</td>
</tr>
<tr>
<td>Bromthymolblau</td>
<td>6,0 – 7,5</td>
<td>gelb</td>
<td>grün</td>
<td>blau</td>
</tr>
<tr>
<td>Blaukraut-Saft</td>
<td>mehrere</td>
<td>rot</td>
<td>grün</td>
<td>blau</td>
</tr>
<tr>
<td>Universal-Indikator</td>
<td>mehrere</td>
<td>rot</td>
<td>grün</td>
<td>blau</td>
</tr>
</tbody>
</table>

Deutung:
Ein einzelner Indikator zeigt in der Regel nur zwei unterschiedliche Farben. Die Farbe im Neutralen hängt von der Lage des Umschlag-Bereiches ab: liegt der im Sauren, findet man bei pH= 7 die Base anzeigende Farbe, liegt er im Basischen, findet man die Säure anzeigende Farbe, liegt er im Neutralen, können Misch-Farben auftreten.

Entsorgung: E1

Quelle:
Allgemeingut, verändert durch Didaktik der Chemie, Universität Bayreuth
Variante:
Sinnvoll ist der Einsatz von Zellkultur-Platten (Wellplate 6) bzw. laminiertes Matrix auf weißem Papier.

Hintergrund:
- Pelikan-Tinte Königsblau 4001 ist eine Mischung aus herstellungsbedingten Isomeren des wasserlöslichen Anilinblaus.
8.2 Hygroskopische Wirkung von Schwefelsäure

Zeitbedarf: 5 Minuten, Lehrende, 1

Kompetenz/Ziel:
F: Schwefelsäure reagiert stark exotherm mit Wasser: Wasser-Entzug
E: Kohlenstoff als Basis der organischen Chemie

Material:
- Becherglas
 (Sicherung für das Reagenzglas)
- Glas-Stab
- Trichter
- Falten-Filter
- Erlenmeyer-Kolben, 500 mL
- altes Reagenzglas, d= 30 mm
- Zeitungspapier

Chemikalien:
- **Natriumhydroxid**
 CAS-Nr.: 1310-73-2
 Gefahr
 H290, H314
 P280, P301+P330+P331, P305+P351+P338, P308+P310
- **Saccharose**
 (Haushaltszucker)
 CAS-Nr.: 57-50-1
 Gefahr
 H290, H314
 P280, P301+P330+P331, P305+P351+P338, P308+P310
- **Schwefelsäure (konz.)**
 w= 96%
 CAS-Nr.: 7664-93-9
 Gefahr
 H290, H314
 P280, P301+P330+P331, P305+P351+P338, P308+P310

Durchführung:
In das Reagenzglas gibt man ca. 2 cm hoch Saccharose. Dann setzt man so viel konz. Schwefelsäure zu, dass der Zucker ganz bedeckt ist. Ggf. mit dem Glas-Stab kurz umrühren

Beobachtung:
Es entsteht zunächst eine zähe gelbe, dann eine schwarze schwammartige Masse mit typischem Geruch.

Deutung:
Schwefelsäure entzieht dem Zucker Wasser, dabei bleibt Kohlenstoff übrig. Weiter-Reaktion zu Kohlenstoffdioxid und Schwefeldioxid. Stark idealisierte Gleichung:

\[
C_6H_{12}O_6 + 6H_2SO_4 \rightarrow 6C + 6H_3O^+ + 6HSO_4^-
\]

Entsorgung:

Quelle: Allgemeingut / Schulbücher

Diskussion: Reversibel?

Hintergrund:

Didaktischer Hinweis:
8.3 Darstellung von Gasen

a) Kohlenstoffdioxid, Wasserstoff

Zeitbedarf: 10 Minuten, Lernende, 1

Kompetenz/Ziel:
- F: Darstellung von Kohlenstoffdioxid und Wasserstoff
- E = Darstellung von Gasen mit low-cost Gasentwickler-Apparatur

Material:
- 2 Reagenzgläser, d= 7,5 mm
- Stopfen A mit 2 Kanülen (1,4*50 mm)
- Stopfen B mit 1 Kanüle (0,6*60 mm)
- Spritze, 5 mL
- Pulver-Spatel

Chemikalien:
- Marmor-Stück
- Calciumcarbonat CAS-Nr.: 471-34-1
- Zink-Pulver CAS-Nr.: 7440-66-6
- Salzsäure c= 2 mol/L CAS-Nr.: 7647-01-0

Gefahr
- H250, H260, H410
- P222, P210, P231+P232, P280, P370+P378, P273

Durchführung:
Aufbau mit Spritzen nach V. Obendrauf im Halbmikro-Maßstab:
Die 2mL Einwegspritzen mit dem jeweils für das herzustellende Gas benötigten Reaktant 2 auffüllen. In das Reagenzglas ca. 3-5g von dem zugehörigen Reaktant 1 geben. Eine 30mL Spritze mit Dichtung auf die zweite Kanüle im Stopfen aufsetzen und anschließend den Reaktant 2 tropfenweise ins Reagenzglas zutropfen. Zur Erzeugung von CO₂ Salzsäure aus der 5 mL-Spritze langsam zu 1 Spatel Marmor oder 1 Spatel Zink-Pulver zutropfen (grobe Steuerung über Tropfenmenge). Das entstehende Gas wird mittels Luer-Lock-Spritze aufgefangen.

Spritze mit dem Spritzenstopfen verschließen.

\[dH_2 = 0,09 \, \text{g/L} \quad dL Luft = 1,29 \, \text{g/L} \quad dCO_2 = 2 \, \text{g/L} \]

ggf. Glimmspan-Probe bzw. Knallgas-Probe durchführen.

HINWEIS: Die Gasentwicklung ist meist so stark, dass der Stempel der großen Spritze nach oben gedrückt wird. Dennoch den Stempel zwischendurch leicht bewegen, um zu testen, ob er klemmt.

HINWEIS:
Beobachtung:
Im Reaktionsgefäss entwickeln sich Gas-Blasen. Die maximal erzeugbare Menge an Gas je 0,5mL Reaktant 2 ist in der Tabelle für jedes Gas aufgelistet. Die erste volle 30mL Spritze verwerfen (zu hoher Luftanteil aus dem Reagenzglas), indem man das Gas durch ein Aktivkohleröhrchen drückt. Die folgenden Spritzen der Reihe nach befüllen und nach Abnahme mit einem Luer-Stopfen verschließen. Das Gas kann darin bis zur Verwendung im Folgeversuch aufbewahrt werden.

Deutung:
Bei der Reaktion beider Reaktanten entsteht ein spezifisches, gasförmiges Produkt. Evtl. entstehende unerwünschte Nebenprodukte müssen durch geeignete Maßnahmen (siehe Entsorgung) beseitigt werden.

\[
\text{CaCO}_3(\text{s}) + 2\text{HCl(aq)} \rightarrow \text{Ca}^{2+}(\text{aq}) + 2\text{Cl}^- (\text{aq}) + \text{CO}_2(\text{g}) + \text{H}_2\text{O(l)}
\]

\[
\text{Zn}(\text{s}) + 2\text{HCl(aq)} \rightarrow \text{Zn}^{2+}(\text{aq}) + 2\text{Cl}^- (\text{aq}) + \text{H}_2(\text{g})
\]

Entsorgung: E1, Zum Stoppen bzw. dem Verhindern toxischer Gase die vorletzte Spalte der Tabelle beachten!

Quelle:
Nach Prof. Dr. Viktor Obendrauf

Diskussion:
Darstellung anderer Gase nach gleichem Prinzip:
Chlor, Methan, Ethin, Chlorwasserstoff. Euduken dafür?

Didaktischer Hinweis:
Gas-Entwickler für diese Gase können mit Absorptionsröhrchen gesichert werden, die man mit Aktivkohle Körnung ca. 2,5 mm befüllt und auf die Kanüle aufsetzt. Eine 10 mL-Spritze wird ohne Kolben befüllt.

WWW:
Materialsammlung Waltraud Habelitz-Tkotz
<table>
<thead>
<tr>
<th>Erzeugtes GAS</th>
<th>Reaktant 1 im Über-schuss (3-5 g) im Gasentwickler deponieren</th>
<th>Reaktant 2 tropfenweise aus der 2 ml Spritze zu dosieren</th>
<th>sammelbares Gasvolumen pro 0,5 ml Reaktant 2</th>
<th>Gasentwicklung stoppen oder Vernichtung toxischer Gase vor Zerlegen des Gasentwicklers</th>
<th>Hilfreiche Tricks und Tipps zur Reaktionsoptimierung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ammoniak</td>
<td>NaOH (s)</td>
<td>konz. Ammoniak-Lösung w=25 %</td>
<td>>50 ml</td>
<td>wie bei Wasserstoff</td>
<td>NH₃-Lösung besonders langsam zutropfen, Gasentwickler mit Adsorptionsröhrchen verschließen</td>
</tr>
<tr>
<td>Chlor</td>
<td>KMnO₄</td>
<td>konz. Salzsäure</td>
<td>>25 ml</td>
<td>verd. NaOH durch Kanüle zugeben</td>
<td>Gummidichtung unbedingt ölen, Adsorptionsröhrchen unerlässlich</td>
</tr>
<tr>
<td>Ethen</td>
<td>5g Molekular-sieb in Periform (Merck Nr. 105705) u. konz. H₂SO₄</td>
<td>Ethanol</td>
<td>>200 ml</td>
<td>Kühlen im Wasserbad</td>
<td>Molekularsieb vorher erhitzen um Wasser auszutreiben; zur Reaktionsauslösung vorsichtig – nicht zu stark (Etherbildung!) erhitzen</td>
</tr>
<tr>
<td>Ethin</td>
<td>CaC₂ (kleines Stück oder als Granulat von Celamerck Wühlmaus-gas-Arrex)</td>
<td>Wasser</td>
<td>>140 ml</td>
<td>Carbide bei aufgesetztem Aktivkohleröhrchen mit Wasser abreagieren lassen</td>
<td>Das geruchsintensive Nebenprodukt Phosphin muss mit dem Adsorptionsröhrchen gebunden werden</td>
</tr>
<tr>
<td>Kohlenstoffdioxid</td>
<td>Na₂CO₃</td>
<td>verd. Salzsäure w=10%</td>
<td>>30 ml</td>
<td>wie bei Wasserstoff</td>
<td>HCl-freies CO₂ erhält man durch Vorschalten eines Aktivkohleröhrchens</td>
</tr>
<tr>
<td>Sauerstoff</td>
<td>MnO₂-Tabletten (5 Stück)</td>
<td>Wasserstoffperoxid w=10%</td>
<td>>30 ml</td>
<td>wie bei Wasserstoff</td>
<td>MnO₂-Tabletten: Vermischen von aktivem (!!!) MnO₂-Pulver u. Zement (Massenteile 3:2), an- teigen mit Wasser, in leere Blisterpackung einfüllen und verfestigen lassen</td>
</tr>
<tr>
<td>Schwefeldioxid</td>
<td>Na₂SO₃</td>
<td>verd. Salzsäure w=10%</td>
<td>>15 ml</td>
<td>verd. NaOH durch Kanüle zugeben</td>
<td>Erhitzen erhöht Ausbeute, Adsorptionsröhrchen verwenden</td>
</tr>
<tr>
<td>Wasserstoff</td>
<td>Zn (granuliert)</td>
<td>konz. Salzsäure</td>
<td>>60 ml</td>
<td>Reaktionsgemisch im Gasentwickler verdünnen (durch Kanüle viel Wasser zudosieren)</td>
<td>Zn mit etwas CuSO₄-Lösung aktivieren</td>
</tr>
<tr>
<td>Mg-Späne</td>
<td>verd. Salzsäure w=10%</td>
<td>>20 ml</td>
<td>Reaktion mit Mg verläuft unter stärkerer Wärmeentwicklung</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wasserstoffchlorid (Chlorwasserstoff)</td>
<td>NaCl</td>
<td>konz. Schwefelsäure</td>
<td>>60 ml</td>
<td>wie bei Wasserstoff</td>
<td>Gasentwickler erwärmen beschleunigt Reaktion</td>
</tr>
</tbody>
</table>
b) Ammoniak D!

Zeitbedarf: 10 Minuten, Lehrende/1

Kompetenz/Ziel:
- F: Darstellung von Ammoniak (gastformig)
- E: Austreiben von schwächeren Säuren und Basen durch stärkere

Material 1:
- Tropftrichter mit Druckausgleich
- Gummi-Schlauch-Stück
- gebogenes Einleitungsrohr

Material 2:
- 2 Reagenzgläser, d= 7,5 mm
- Stopfen A
 - mit 2 Kanülen (1,4*50 mm)
- Stopfen B
 - mit 1 Kanüle (0,6*60 mm)
- Spritze, 5 mL

Chemikalien:
- Ammoniak-Lösung
 - w= 25% (konz.)
 - CAS-Nr.: 1336-21-6
- Natriumhydroxid
 - CAS-Nr.: 1310-73-2
 - Gefahr: H290, H314

Durchführung 1:

Traditioneller Aufbau mit Glas-Laborgeräten, Makro-Maßstab:

\[
\text{d}_{\text{NH}_3} = 0,6 \text{ g/L} \quad \text{d}_{\text{Luft}} = 1,29 \text{ g/L}
\]

Durchführung 2:

Alternativer Aufbau mit Spritzen nach V. Obendrauf im Halbmikro-Maßstab, vgl. Versuch 8.3 a), Seite 144 Darstellung von Gasen.
Durch langsames Zutropfen der konz. Ammoniak-Lösung aus der 5 mL-Spritze zu Natriumhydroxid lässt sich die Gas-Entwicklung grob steuern.
Das entstehende Gas wird mittels Luerlock-Spritze 30mL aufgefangen und diese mit einem Stopfen verschlossen.

\[
\text{d}_{\text{NH}_3} = 0,6 \text{ g/L} \quad \text{d}_{\text{Luft}} = 1,29 \text{ g/L}
\]

HINWEIS: Prüfung der Kanülen auf Durchlässigkeit bzw. Rost!

Beobachtung:
Deutung:

\[\text{NaOH}(s) + \text{NH}_3(aq) \rightarrow \text{Na}^+(aq) + \text{OH}^- + \text{NH}_3(g) \]

Die stärkere Base NaOH (pK_s = 15,74) setzt die schwächere Base NH_3 (pK_s = 9,25) frei.

Entsorgung:

E1

Quelle:
Schulbücher (1) bzw. V. Obendrauf in Chemie & Schule, 2001

Diskussion:

- Darstellung anderer Gase nach gleichem Prinzip: Chlor, Kohlenstoffdioxid, Methan, Ethin, Chlorwasserstoff. Edukte dafür?
- Sicherheit: Ammoniak und Chlorwasserstoff, sind in der Gefahrstoff-Liste markiert mit „für Schülerversuchen nicht untersagt, aber Ersatzstoff-Prüfung von besonderer Bedeutung“. Einsatz nur mit geübten Lernenden
- Didaktischer Hinweis:

WWW:
8.4 Springbrunnen-Versuch B/D!

Zeitbedarf: 10 Minuten, Lehrende, n
Kompetenz/Ziel:
F: Lös-Vermögen von Gasen in Wasser
E: Dissoziation von Basen in Wasser

Material 1:
- dickwandige Wasch-Flasche oder Rundkolben
- Gummi-Stopfen mit Bohrung
- Glas-Rohr, d= 7 mm, mit Spitze
- pneumatische Wanne
- Stativ, Muffe, Klammer

Material 2:
- Spritze, 20 mL (mit Gummi-Dichtung)
- Becherglas, 50 mL
- Stopfen B mit Kanüle 0,6*60 mm
- Reagenzglas, d= 7,5 mm

Chemikalien:
- VE-Wasser
- **Ammoniak** (g)

 Gefahr
 H221, H280, H331, H314, H400

Chemikalien 2:
- **Phenolphthalein**-Lösung ethanolisch (Indikator)

 Gefahr
 H350, H226, H319, H341
 P201, P210, P305+P351+P338, P308+P313

Durchführung 1: Lehrende

Traditioneller Aufbau im Makro-Maßstab:

Durchführung 2: Lernende

Alternativer Aufbau mit Spritzen nach V. Obendrauf, Halbmikro-Maßstab:
In das trockene Reagenzglas leitet man Ammoniak-Gas ein, hergestellt nach Versuch 8.3b und verschließt mit Stopfen B. Im Becherglas werden ca. 30 mL Wasser mit 5 Tropfen Phenolphthalain-Lösung versetzt und daraus die 20 mL Spritze gefüllt. Diese spritze auf die Kanüle von Stopfen B aufsetzen. Die Reaktion startet, sobald einige Tropfen Wasser eingespritzt wurden. Leichtgängige Spritzen verwenden! (Gummi-Lippen mit Silicon-Öl fetten)

Beobachtung: Wasser spritzt in das Gefäß von selbst hinein.

Deutung:

\[
\text{NH}_3(\text{g}) + \text{aq} \rightarrow \text{NH}_3(\text{aq})
\]

Ammoniak-Gas löst sich sehr gut in Wasser:

1142 Liter gas je Liter Wasser bei 0°C (HCl (g): 525 Liter)

Entsorgung: E1

Quelle: Schulbücher (1) bzw. V. Obendrauf in Chemie & Schule, 2001

Diskussion: Variante mit Chlorwasserstoff
8.5 Säure-Base-Springbrunnen im kleinen Maßstab

Zeitbedarf: ca. 15-20 Minuten, Lernende
Kompetenz/Ziel:
F = Darstellung von Ammoniak, Lösevermögen von Gasen in Wasser,
E = Dissoziation von Basen in Wasser, Kennenlernen der Experimentiertechnik mit Medizintechnik (=Microscale)

Material:
- 2 Injektionsfläschchen 5mL mit Stopfen
- 1 Injektionsfläschchen 10mL
- 1 Pipettenspitze gelb
- 1 Kanüle (Rosa) 1,2mmx4mm
- 1 Micro-Spatel
- 1 Teelicht
- Schere
- VE-Wasser in Tropf-Flasche 50mL
- Bromthymolblau-Lösung, schwach sauer (gelb) CAS-Nr.: 56-59-5
- Indikator-Papier

Chemikalien:
- Ammoniumchlorid
 CAS-Nr.: 12125-02-9
 Gefahr
 H302, H319
 P305+P351+P338
- Natriumhydroxid-Plätzchen
 CAS-Nr.: 1310-73-2
 Gefahr
 H314, H290
 P280.1-3, P301+330+331, P303+361+353, P305+351+338, 309+310

Vorbereitung:
In das 10mL Injektionsfläschchen einen Tropfen Bromthymolblau-Lösung geben und fast ganz mit Wasser füllen. Das Teelicht anzünden. Einen der Stopfen mit der Pipettenspitze durchbohren und die Spitze mit einer Schere etwas kürzen (Erweiterung der Öffnung).

Durchführung 1:
3 Micro-Spatelspitzen Ammoniumchlorid und 1 Natriumhydroxid-Plätzchen in eine der 5mL Injektionsfläschchen geben wenige Tropfen Wasser zugeben. Dieses Fläschchen zügig mit dem mit der Pipettenspitze préparierten Stopfen verschließen und eine weiter 5mL Injektionsflasche mit der Öffnung darüberstülpen. Zur Beschleunigung der Reaktion erwärmt man das untere Fläschchen VORSICHTTIG über einem Teelicht (es darf kein Wasserdampf ins andere Fläschchen übergehen!).

Sobald aus dem oberen Gefäß Ammoniak austritt (Geruch, bzw. Test mit feuchtem Indikator-Papier) wird das Erhitzen mit dem Teelicht beendet. Das obere (mit Ammoniak-Gas gefüllte) Fläschchen wird kopfüber vom préparierten Stopfen weggenommen und mit einem anderen Stopfen verschlossen.
Die Kanüle wird über Kopf ca. 0,5cm weit durch den Stopfen auf dem mit Ammoniak gefüllten Fläschchen gestochen. Anschließend wird diese Injektionsflasche auf das vorbereitete, mit Wasser und Indikator gefüllte Fläschchen gestellt, so dass das Ende der Kanüle weit ins Wasser taucht. Die Apparatur fest mit Daumen und Zeigefinger zusammendrücken (Daumen unten und Zeigefinger oben). Um den Reaktionsstart zu beschleunigen, wird die mit den Fingern zusammengehaltene Apparatur einmal kurz und schnell um 180° gedreht (fest zusammenhalten!), nach unten beschleunigt und wieder in die Ausgangsposition gebracht. Dadurch kommt ein Start-Tropfen ins kleine Gefäß. Nun lässt man die beiden Fläschchen auseinander stehen und wartet, bis der Springbrunnen einsetzt (manchmal bis zu 30 Sekunden oder 1 Minute).

Beobachtung 1:
Wasser spritzt durch die Kanüle vom unteren Fläschchen ins Obere. Dabei färbt sich der Indikator von gelb nach blau. Die Reaktion ist beendet, wenn das Ende der Kanüle nicht mehr ins Wasser taucht, bzw. wenn die Reaktion zwischen Ammoniak (g) und Wasser im oberen Gefäß beendet ist.

Deutung 1:

\[
\text{NH}_3 + \text{H}_2\text{O} \rightarrow \text{NH}_4^+ + \text{OH}^-
\]

Bzw. vereinfacht:

\[
\text{NH}_3 (g) + \text{aq} \rightarrow \text{NH}_3 (aq)
\]

Diskussion:
Dieser Versuch kann in verschiedenen Artikulationsstufen der Unterrichtsplanung eingesetzt werden und bspw. zur Problemfindung, als Erarbeiterungs- oder Bestätigungsexperiment dienen. In den ersten beiden Varianten kann die Deutung als Ausschnitt der Teilchenebene erfolgen. Eine mögliche Fragestellung kann lauten: „Skizziere die Teilchen, die sich im kleinen, oberen Injektionsfläschchen bei Durchführung 1 und im oberen Fläschchen der Durchführung 2 befinden.“ Ebenfalls wäre denkbar, dass man für die Beobachtung in Durchführung 2 drei verschiedene Teilchenbilder vorgibt und die Schüler sie erst beschreiben und dann begründen sollen, welches davon das richtige ist.

Entsorgung:

Quelle:
Anleitung nach Peter Schwarz, verändert durch Waltraud Habelitz-Tkotz
8.6 Verdünnen konzentrierter Säuren

Zeitbedarf: 5 Minuten, Lehrende, n

Kompetenz/Ziel:
F: Berechnung von Einwaagen für Lösungen bestimmter Konzentration
B: Sicherheit beim Verdünnen von Säuren oder Laugen

Material:
- Becherglas, 100 mL
- Magnetrührer, regelbar
- Magnet-Rührstäbchen
- Magnetrührstäbchen-Entferner
- Glas-Thermometer oder elektronisches Thermometer mit Temperatur-Sonde
- Mess-Pipette, 20 mL
- Mess-Pipette, 5 mL

Chemikalien:
- Schwefelsäure (konz.)
 - w = 96%
 - CAS-Nr.: 7664-93-9
 - Gefahr: H290, H314
 - P280, P301+P330+P331, P305+P351+P338, P308+P331

- Vorratsflasche für Schwefelsäure
 - stark angesäuertes Wasser
 - w = 20%
 - CAS-Nr.: 7664-93-9
 - Gefahr: H290, H314
 - P280, P301+P305+P351+P338, P310

Durchführung 1:
In das Becherglas 10,4 mL Wasser vorlegen, Thermometer einhängen und 9,6 mL konz. Schwefelsäure langsam zuführen lassen. Mit dem Thermometer etwas umrühren. Temperatur-Verlauf beobachten.

Beobachtung 1:
Die verdünnte Schwefelsäure erreicht eine Temperatur von über 100°C (Erf.: 112°C)

Deutung 1:
Die zugrundeliegende Protolyse ist stark exotherm:
\[\text{H}_2\text{SO}_4 + \text{H}_2\text{O} \rightarrow \text{H}_3\text{O}^+ + \text{HSO}_4^- \]
\[dH << 0 \]

Durchführung 2:
Weitere 40 mL Wasser zugeben und das Gesamt-Volumen ablesen. Welche Konzentration besitzt die Schwefelsäure jetzt?

Aufgabe: Berechnen Sie den Massen-Anteil w der Schwefelsäure-Lösung.

Auswertung:
\[w(\text{H}_2\text{SO}_4) = \frac{m(\text{H}_2\text{SO}_4)}{m(\text{H}_2\text{SO}_4) + m(\text{H}_2\text{O})} \]
\[m(\text{H}_2\text{SO}_4) = d(\text{H}_2\text{SO}_4) \times V(\text{H}_2\text{SO}_4) \]

Entsorgung:
In die Vorratsflasche geben: in dieser Konzentration wird die Schwefelsäure für den Hoffmann'schen Zersetzungsapparat weiterverwendet.

Quelle: Allgemeingut

Diskussion: VARIANTE: Mischung von Wasser / konz. Schwefelsäure im Verhältnis 1:1 im Polystyrol-Becher (Joghurt, …) im großen Becherglas durchführen: PS-Becher schmilzt.
8.7 pH-Wert von Säuren B/D!

Zeitbedarf: 3 Minuten, Lehrende, 1
Kompetenz/Ziel:
F: Protolyse von Säuren
E: Donator-Akzeptor-Prinzip, pH-Messung
B: Bedeutung des Wassers für die Protolyse

Material:
- Becherglas, 50 mL
- Uhr-Glas
- Löffel-Spatel
- Pasteur-Pipette, Hütchen
- Leitfähigkeitsprüfer
- Universalindikator-Papier

Chemikalien:
- VE-Wasser
- Essigsäure (Eisessig) w= 100% CAS-Nr.: 64-19-7
- Zitronensäure CAS-Nr.: 5949-29-1

Gefahr H226, H290, H314 P210, P280, P301+P330+P331, P305+P351+P338, P308+P310

Vorbereitung: Eisessig mit Calciumoxid trocknen.

Durchführung 1:
In das Becherglas gibt man ca. 10 mL wasserfreie Essigsäure und prüft sofort den pH-Wert (schnell ablesen). Dann gibt man mit einer Pipette tropfenweise Wasser zu und verfolgt die Änderung des pH-Wertes.

Beobachtung 1:
Der pH-Wert sinkt (von pH= 5 auf pH= 1) und die Leitfähigkeit steigt mit zunehmender Verdünnung.

Deutung 1:
Protolyse ist erst bei Gegenwart eines Protonen-Empfängers (Base; meist Wasser) möglich. Also handelt es sich hier eigentlich schon um eine Säure/Base-Reaktion nach Brønsted.

Durchführung 2:
Variante zu 1: Etwas feste Zitronensäure wird auf das Uhr-Glas gegeben und mit pH-Papier berührt.

Beobachtung 2:
Keine Änderung des Indikators erkennbar.

Deutung 2:
Ohne Empfänger können Säuren keine Protonen abgeben. Wasser kann Protonen-Akzeptor sein, genauso der Indikator-Farbstoff:

\[HX + H_2O \rightarrow H_3O^+ + X^- \]

Allerdings kann der Säure-Wasserstoff besser über das Wasser zum Indikator gelangen (siehe Experiment: Wasser als Lösemittel)

Entsorgung: E2 (Vorsicht, schäumt)

Quelle: W. Wagner, Didaktik der Chemie, Universität Bayreuth

Diskussion: Voraussage für den Fall Aceton statt Wasser? Warum muss schnell abgelesen werden? Ist dies eine Erklärung dafür, dass man bei reiner (ungelöster) Zitronensäure keinen pH-Wert misst?
8.8 Die Einwirkung von Basen

Zeitbedarf: 3 Minuten + 3-7 Tage Wartezeit, Lehrende, n
Kompetenz/Ziel:
F: Ätzende Wirkung von Basen
B: Gefahren beim Umgang mit (starken) Basen

Material:
- Reagenzglas, d= 18 mm
- Schere
- Glas-Stab
- Haar

Chemikalien:
- Natriumhydroxid
 CAS-Nr.: 1310-73-2
 Gefahr
 H290, H314
 P280, P301+P330+P331, P305+P351+P338, P308+P310

Durchführung:
In das Reagenzglas eine Haar-Strähne geben, dann dazu 5 Plätzchen (oder ca. 20 Grana) Natriumhydroxid und ca. 3 mL Wasser.
Gut umrühren und bis zum nächsten Praktikumstermin stehen lassen.

Beobachtung:
Die Haare werden aufgelöst.

Deutung:
Basische Hydrolyse von Protein (viele AS werden zerstört, alle racemisiert).

Entsorgung:
E2

Quelle:
Allgemeingut / Schulbücher

Diskussion:
Gefährlichkeit von Basen-Verätzungen an der Horn-Haut.
8.9 Zauber-Wasser

Zeitbedarf: 10 Minuten, Lehrende, 1
Kompetenz/Ziel:
E: „Zaubern“ lässt sich durch Chemie erklären. „Neue“ Eigenschaften zeigen Stoff-Änderung an
B: Unterscheidung physikalischer und chemischer Reaktion

Material:
- 8 Bechergläser, 250 mL hohe Form
- Alternativ: 8 Sekt-Gläser
- Pasteur-Pipetten, Hüttchen
- VE-Wasser
- Kaliumhexacyanoferrat-(III) CAS-Nr.: 13746-66-2
- Natriumsulfit CAS-Nr.: 7757-83-7
- Phenolphthalein-Lösung ethanolisch (Indikator) w= 1%
 CAS-Nr.: 77-09-8
- Natronlauge w= 30%
 CAS-Nr.: 1310-73-2
- Schwefelsäure (verd.)
 w= 10%
 CAS-Nr.: 7664-93-9
- Kaliumpermanganat (s)
 CAS-Nr.: 7722-64-7
- Eisen(II)-sulfat-Heptahydrat
 CAS-Nr.: 7782-63-0
- Kaliumthiocyanat
 CAS-Nr.: 333-20-0

Chemikalien:
- Gefahr H350, H226, H319, H341
 P201, P210, P305+P351+P338, P308+P313
- Gefahr H290, H314
 P280, P301+P330+P331, P305+P351+P338, P308+P310
- Gefahr H272, H302, H314, H410
 P220, P273, P280, P305+P351+P338, P310, P501
- Gefahr H290, H314
 P280, P308+P310, P303+P361+P353, P305+P351+P338

Vorbereitung:
Bechergläser mit minimalen Stoff-Mengen (am besten kaum sichtbar) auf dem Boden präparieren und in dieser Reihenfolge aufstellen:
- Glas 1: 5 Tropfen Natronlauge unsichtbar auf dem Glas-Boden verteilt
- Glas 2: 3 Tropfen Phenolphthalein-Lösung
- Glas 3: 5 Tropfen Schwefelsäure Lösung unsichtbar auf dem Glas-Boden verteilt
- Glas 4: Auf dem Boden Wenige Kristalle von fein gepulvertem Kaliumpermanganat
- Glas 5: auf dem Becherglas-Boden 3 Tropfen Schwefelsäure-Lsg. Und einige Kristalle Eisen(II)-sulfat
- Glas 6: einige Kristalle Kaliumthiocyanat
- Glas 7: Einige Kristalle fein gepulvertes Kaliumhexacyanoferrat(III)
Durchführung: Lehrende

In Becherglas Nr. 1 ca. 150 mL VE-Wasser für die Zuschauer sichtbar einfüllen, danach je einen Teil des Becherglas-Inhaltes in das nächste Glas gießen, sodass die Veränderung deutlich wird:

![Diagramm](image)

<table>
<thead>
<tr>
<th>Nr</th>
<th>Färbung</th>
<th>Grund</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Farblos</td>
<td>NaOH verdünnt</td>
</tr>
<tr>
<td>2</td>
<td>pink</td>
<td>Indikator in basischer Umgebung</td>
</tr>
<tr>
<td>3</td>
<td>farblos</td>
<td>Indikator aus Glas 2 in saurer Umgebung</td>
</tr>
<tr>
<td>4</td>
<td>violett</td>
<td>Lösung des Kaliumpermanganats: violette Lösung Indikator in saurer Umgebung</td>
</tr>
<tr>
<td>5</td>
<td>farblos</td>
<td>Reduktion des Kaliumpermanganats</td>
</tr>
<tr>
<td>6</td>
<td>rot</td>
<td>Bildung des roten Fe-SCN-Komplex</td>
</tr>
<tr>
<td>7</td>
<td>blau</td>
<td>Bildung von Berliner Blau</td>
</tr>
</tbody>
</table>

Deutung:

Unser Leitungswasser ist sehr variabel und Lehrende der Chemie können zaubern ;-)

Becher 1 - 3 zeigen das Verhalten des Säure-Base-Indikators Phenolphthalein:

![Molekülschemata](image)

Die violetten Permanganat-Ionen (MnO$_4^-$) aus Becher 4 werden durch Fe$^{2+}$-Ionen in Becher 5 zu fast farblosen Mn$^{2+}$-Ionen reduziert, die Fe$^{2+}$-Ionen dabei zu gelben Fe$^{3+}$-Ionen oxidiert.

\[
\begin{align*}
\text{MnO}_4^- + 5e^- + 8\text{H}_3\text{O}^+ & \rightarrow \text{Mn}^{2+} + 12\text{H}_2\text{O} \\
\text{Fe}^{2+} & \rightarrow \text{Fe}^{3+} + e^- \\
\text{MnO}_4^- + 8\text{H}_3\text{O}^+ + 5 \text{Fe}^{2+} & \rightarrow \text{Mn}^{2+} + 12\text{H}_2\text{O} + 5 \text{Fe}^{3+}
\end{align*}
\]

Die Fe$^{3+}$-Ionen bilden mit SCN$^-\text{-Ionen (Becher 6)}$ den intensiv-roten Eisenthiocyanat-Komplex:

\[
\text{Fe}^{3+} + 3 \text{SCN}^- \leftrightarrow \text{Fe(SCN)}_3
\]

In Becher 7 bildet sich der extrem stabile Hexacyanoferrat(II)-Komplex in Form von "Berliner Blau" Fe$_4[\text{Fe(CN)}_6]_3$.

Entsorgung:
Alle Lösungen verdünnt in den Ausguss

Quelle:
Allgemeingut

Didaktischer Hinweis:
Der Versuch eignet sich, um Lernende zu Deutungsmöglichkeiten herauszufordern. „Von nichts kommt nichts.“

Sinnvoll ist es zudem, im Chemie-Unterricht den Versuch immer dann wieder „aufzuwärmen“, wenn das entsprechende Thema (Säure/Base, Redox, Komplexe) angesprochen wird. Das hebt den Versuch aus dem reinen „Show-Effekt“ heraus.
8.10 pH-Werte von Alltagsprodukten D!

Zeitbedarf: 10 Minuten, Lernende, 1
Kompetenz/Ziel:
E: Abschätzen und Messen des pH-Wertes mit pH-Skalen
B: Einordnen des Gefahren-Potenzials von Alltagsprodukten

Material:
- Messer
- 3 Petrischalen ohne Deckel

Alltagsprodukte:
- Zitronensaft
- Sauerkraut, Dose
- Apfel
- Wein (weiß oder rot)
- Cola oder Fanta
- Naturjoghurt
- Haushaltsessig
- 6 Bechergläser, 50 mL
- Becherglas, 400 mL
- Mineralwasser
- stilles Wasser, Leitungswasser
- Kernseife
- WC-Reiniger, sauer und basisch
- Achtung
- Kalkwasser (Calciumhydroxid-Lösung)
- Gefahr

Chemikalien:
- Zitronensäure
 CAS-Nr.: 5949-29-1
 H319
 P280, P305+P351+P338, P337+P313

Vorbereitung:
- Nicht essbare Produkte in halben Petrischalen bereitstellen:
- Seife im Stück, Reiniger mit etwas Wasser versetzen, Zitronensäure ungelöst.
- Getränke/Essig in kleinen Bechergläsern bereitstellen.
- Die anderen Lebensmittel in Original-Packungen.

Durchführung:
Man taucht ein etwa 4 cm langes Stück Indikator-Papier von der Rolle mit einem Ende in die Flüssigkeit ein.
Man vergleicht die Farbe mit der Skala auf dem Rollen-Deckel und notiert das Ergebnis in der entsprechenden Zeile der Tabelle unten.
Hinweis: Kernseife stets mit einigen Wasser-Tropfen feucht halten, Apfel neu anschneiden.
Beobachtung:

<table>
<thead>
<tr>
<th>Stoff</th>
<th>Erf.</th>
<th>pH</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zitronensaft</td>
<td>3</td>
<td>7</td>
</tr>
<tr>
<td>Zitronensäure</td>
<td>7!</td>
<td>8</td>
</tr>
<tr>
<td>Sauerkraut</td>
<td>7</td>
<td>7</td>
</tr>
<tr>
<td>Apfel</td>
<td>5</td>
<td>7</td>
</tr>
<tr>
<td>Cola oder Fanta</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>Wein</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>WC-Reiniger sauer</td>
<td>2</td>
<td>2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Stoff</th>
<th>Erf.</th>
<th>pH</th>
</tr>
</thead>
<tbody>
<tr>
<td>Naturjoghurt</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>Essig</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>Mineralwasser</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>Leitungswasser</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>Kernseife</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>Kalk-Wasser</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>WC-Reiniger basisch</td>
<td>10</td>
<td></td>
</tr>
</tbody>
</table>

Entsorgung:
E2

Quelle:
Schulbücher / Allgemeingut

Diskussion:
- „Cola zersetzt den Magen“
- Überraschende Werte?
- Zitronensäure!
8.11 Säuren essen D!

Zeitbedarf: 10 Minuten, Lernende, 1

Kompetenz/Ziel:
F: Kenntnis (fester) Säuren als Lebensmittel-Zusatz
K: Lebensmittel-Zusatzstoffe und Gesundheit

Material:
- Uhr-Gläser, Lebensmittel geeignet
- Folien-Stift, permanent
- Chemikalien:
 - **Zitronensäure E330, Ph.Eur.**
 - CAS-Nr.: 77-92-9
 - Achtung
 - H319
 - P280, P337+P313, P305+P351+P338
 - **Äpfelsäure E296, Ph.Eur.**
 - CAS-Nr.: 6915-15-7
 - Achtung
 - H319
 - P280, P337+P313, P305+P351+P338
 - **Ascorbinsäure E300, Ph.Eur.**
 - CAS-Nr.: 50-81-7
 - **Fumarsäure E297, Ph.Eur.**
 - CAS-Nr.: 110-17-8
 - Achtung
 - H319
 - P280, P337+P313, P305+P351+P338
 - **Weinsäure E334, Ph.Eur.**
 - CAS-Nr.: 87-69-4
 - Gefahr
 - H318
 - P280, P305+P351+P338

Vorbereitung:
Lebensmittel-Qualität bzw. –Reinheit
Auf beschriftete Uhr-Gläser werden je ca. 1 g Säure vorgelegt

Hinweis zur Sicherheit:
- Zum hygienischen Probieren aus derselben Vorlage schlage ich vor, mit der nagefeuchten Finger-Spitze einige Kristalle aus dem Uhr-Glas zu heben. Wo die Substanz berührt wird, kleben Kristalle fest, der Rest bleibt sauber zurück.
- Im Schul-Betrieb sollten Stoffe, die zu Probier-Zwecken verwendet werden sollen, gesondert aufbewahrt und als Lebensmittel gekennzeichnet werden. Bei der Anschaffung ist auf Ph.Eur.-Qualität zu achten.
- Auch Geräte, die mit Probier-Chemikalien in Berührung kommen, sollten sehr sorgfältig gereinigt und gesondert aufbewahrt werden, und sei es nur darum: „Das Auge isst mit!“

Durchführung:
Geschmackstest der verschiedenen Säuren. Frage-Stellungen:
schmecken sie auf unterschiedliche Art und Weise sauer (Qualität)
schmecken sie unterschiedlich stark sauer (Quantität)
Ergebnis:

<table>
<thead>
<tr>
<th>Stoff</th>
<th>Eindruck</th>
</tr>
</thead>
<tbody>
<tr>
<td>Äpfelsäure</td>
<td></td>
</tr>
<tr>
<td>Zitronensäure</td>
<td></td>
</tr>
<tr>
<td>Ascorbinsäure</td>
<td></td>
</tr>
<tr>
<td>Weinsäure</td>
<td></td>
</tr>
<tr>
<td>Fumarsäure</td>
<td></td>
</tr>
</tbody>
</table>

Entsorgung:
E2

Quelle:
Didaktik der Chemie, Universität Bayreuth

Diskussion:
Was ist gesünder, Ascorbinsäure oder Vitamin C?

WWW:
http://www.chemieunterricht.de/dc2/asz2/inhalt1.htm
Sehr viel schulrelevante Information zu Vitamin C
8.12 Salze essen

Zeitbedarf: 30 Minuten, Lehrende, 1, geöffnete Variante

Kompetenz/Ziel:
E: Versuchsplanung
B: Hypothesen durch Experimente überprüfen

Aufgabe:
Finde heraus, was an Natriumchlorid salziger schmeckt:
Das Na⁺-Kation oder das Cl⁻-Anion?

Voraussetzung:
- Sicherheitsbelehrung über den Umgang mit Chemikalien, Gefahrensymbole
- Grund-Kenntnisse aus der Ionen-Lehre (z. B. Ionen-Bildung, Unterschied zu Molekülen und Atomen)
- Haupt-Gruppen des PSE
- Planung von Experimenten
- Grund-Fertigkeiten des Experimentierens
- Arbeitsblatt „Chemikalien-Katalog“: eine Auswahl von Halogen-Salzen mit sicherheitsrelevanten Informationen dazu (z. B. Gefahren-Symbole, Gefährdungsgrenze)

Material:
- 5 Uhr-Gläser
- Folienstift, wasserfest
- 5 Spatel
- Arbeitsblatt „Chemikalien-Katalog“

Chemikalien:
- **Natriumchlorid**
 Kochsalz
 CAS-Nr.: 7647-14-5
- **Natriumbromid**
 CAS-Nr.: 7647-15-6
- **Kaliumchlorid**
 CAS-Nr.: 7447-40-7
- **Magnesiumchlorid**
 CAS-Nr.: 7791-18-6

Vorbereitung:
Lebensmittel-Qualität bzw. Reinheit
Zur Ansicht liegt das Arbeitsblatt bereit, aus denen Lernende die Substanzen für das Experiment heraussuchen sollen, die zur Lösung der Aufgabe beitragen können.

Hinweise zur Sicherheit:
- Zum hygienischen Probieren aus derselben Vorlage schlage ich vor, mit der nagefeuchten Finger-Spitze einige Kristalle aus dem Uhr-Glas zu heben. Wo die Substanz berührt wird, kleben Kristalle fest, der Rest bleibt sauber zurück.
- Im Schul-Betrieb sollten Stoffe, die zu Probier-Zwecken verwendet werden sollen, gesondert aufbewahrt und als Lebensmittel gekennzeichnet werden. Bei der Anschaffung ist auf Ph.Eur.-Qualität zu achten.
- Auch Geräte, die mit Probier-Chemikalien in Berührung kommen, sollten sehr sorgfältig gereinigt und gesondert aufbewahrt werden, und sei es nur darum: „Das Auge isst mit!"

Durchführung:
Lernende diskutieren in Gruppen zu ca. 4 Mitgliedern Strategien zur Lösung der Aufgabe:
Was muss man untersuchen, um eine Antwort geben zu können?
Ergebnis der Diskussion kann eine geeignete Auswahl in Form einer Liste von Ionen-Verbindungen sein, deren Geschmack die Antwort liefert.
Dabei hilft das Arbeitsblatt „Chemikalienkatalog“. Vor Arbeitsbeginn wird der Lehrende zur Kontrolle die erstellte Liste vorgelegt und danach erst die Substanzen untersucht. Die Ergebnisse sollten gruppenweise präsentiert und begründet werden.

Ergebnis:

<table>
<thead>
<tr>
<th>z. B. Stoff</th>
<th>Geschmackseindruck</th>
</tr>
</thead>
<tbody>
<tr>
<td>Natriumchlorid</td>
<td></td>
</tr>
<tr>
<td>Natriumbromid</td>
<td></td>
</tr>
<tr>
<td>Kaliumchlorid</td>
<td></td>
</tr>
<tr>
<td>Magnesiumchlorid</td>
<td></td>
</tr>
<tr>
<td>Natriumiodid</td>
<td></td>
</tr>
<tr>
<td>…?</td>
<td></td>
</tr>
</tbody>
</table>

Lösung:

Lernende formulieren die Antwort auf o. a. Aufgabe. Meistens wird Na^+ als verantwortlich für den salzigen Geschmack empfunden.

Entsorgung:

E2

Quelle:

Seminar I; Didaktik der Chemie, Universität Bayreuth

Diskussion:

- Was ist gesünder, Natriumchlorid, Kochsalz oder Himalaya-Salz?
- Manche Erfahrungen legen nahe, dass Kinder den salzigen mit dem sauren Geschmack verwechseln oder nicht differenzieren können. Ob das ein sprachliches oder physiologisches Problem ist, ist ungeklärt, jedenfalls bereitet die Tatsache beim Finden der Lösung Schwierigkeiten.
8.13 Halbautomatische Titration von Salzsäure mit Natronlauge

Zeitbedarf: 30 Minuten, Lehrende, 1
Kompetenz/Ziel:
E: Aufnahme und Deutung einer Titrationskurve.
Handhabung einer Anordnung zur computergestützten Messwert-Erfassung

Material:
- Becherglas, 150 mL, hoch
- Becherglas, 400 mL, weit
- Magnetrührer, regelbar
- Magnetrührstäbchen, -Entferner
- Stativ
- Büretten-Klemme
- Trichter, d= 60 mm

Chemikalien:
- VE-Wasser
- Puffer pH 4 und pH 9
- Salzsäure c= 0,1 mol/L
 CAS-Nr.: 7647-01-0

Vorbereitung:
- Computer starten
- Sicherstellen, dass der ACM II mit dem Computer verbunden ist.
- pH-Messkette an den pH-Eingang, dann ACM II an das Netzteil anschließen.
- Anschlüsse bestätigen, weiter.
- Messbereich automatisch festlegen lassen.
- Zur Messung „Titration über Volumen auf Tastendruck“ wählen. Volumenintervalle auf 1 mL und Gesamtvolumen auf 40 mL einstellen. „Direkt zur Messung gehen“.

Durchführung:
Aufnahme der Titrationskurve:
- In dem 150 mL Becherglas ein Rührstäbchen und 25 mL Salzsäure vorlegen; pH-Messkette eintauchen und in einer Klammer spannen. Ggf. mit Wasser so auffüllen, dass die Messkette über das Diaphragma eintaucht. ACHTUNG: KEINE Blasen in Messkette!
- Messung durch Tasten-Druck starten.
- Aus der Bürette 1 mL Maß-Lösung auslaufen lassen, dann Leertaste drücken. Wiederholen bei 19 mL Zugabe.
Natronlauge tropfenweise zugeben und den pH-Änderung dabei beobachten. Nach 20 mL Zugabe Tastendruck, weitere mL-Weise Zugabe/Tastendruck wie zuerst.
Nach insgesamt 40 mL Natronlauge-Zugabe Messung stoppen (Software!).
Kurve unter einem Namen im gewünschten Arbeitsbereich abspeichern.
X-Achse (Volumen) sinnvoll anpassen. Wieder abspeichern.

Ergebnis:

\[\text{Auswertung:} \]
Der pKS-Wert lässt sich hier (sehr starke Säure, Lit. \(pK_S = -6 \)) nicht bestimmen.
Diskutieren Sie Anfangs- und End-pH-Wert.
Wieso erreicht er nicht genau 13?
Varianten:
1) Durch die Verwendung einer [selbstgebauten Gleichlauf-Bürette](#) kann eine automatische Titration simuliert werden.
2) Manche Datenerfassungssysteme (z. B. Vernier) bieten einen Tropfen-Zähler zur Erfassung des Volumens.
3) Sollte das Datenerfassungssystem ein Relais bieten, dass 230 V-Geräte schalten kann (z. B. ChemBox), so lässt sich ein Thermostat realisieren, siehe Versuch [Fehler! Verweisquelle konnte nicht gefunden werden.](#)

Diskussion:
Der pKS-Wert lässt sich hier (sehr starke Säure, Lit. \(pK_S = -6 \)) nicht bestimmen.
Diskutieren Sie Anfangs- und End-pH-Wert.
Wieso erreicht der End-pH-Wert nicht genau den Literaturwert von 13?

Entsorgung:
B1 Anorganischer Sammelbehälter

Quelle:
AK Kappenberg; Halbautomatische Titration mit dem All-Chem-Misst
9. Alkalimetalle und Halogene / Termin: 30.06.2020

9.1 Alkalimetalle und Wasser D!

Zeitbedarf: 15 Minuten, Lernende, 1
Kompetenz/Ziel:
F: Eigenschaften der Alkalimetalle
E: Stoff-Eigenschaften und PSE
B: Alkalimetalle als Gefahrstoffe

Material:
- Pinzette
- Messer

Chemikalien:
- Spülmittel
- VE-Wasser
- Phenolphthalein-Lösung
 ethanolisch (Indikator)
 W= 1%
 CAS-Nr.: 77-09-8
- Natrium
 CAS-Nr.: 7440-23-5
- Kalium
 CAS-Nr.: 7440-09-7

- Filter-Papier
- 3 Petrischalen, d= 100 mm

- Lithium
 CAS-Nr.: 7439-93-2
 Gefahr
 H260, H314
 EUH014
 P233, P231+P323, P280, P305+P351+P338, P370+P378+P422
- Isopropanol (2-Propanol)
 CAS-Nr.: 67-63-0
 Gefahr
 H225, H319, H336
 P210, P233, P240, P305+P351+P338, P403+P235
- Spiritus (Ethanol)
 CAS-Nr.: 64-17-5
 Gefahr
 H225, H319
 P210, P240, P305+P351+P338, P403+P233

Durchführung:
Die drei Petrischalen füllt man gut zur Hälfte mit Wasser und gibt 3-5 Tropfen Phenolphthalein-Lösung und 1 Tropfen Spülmittel zu.

Dann schneidet man von den Alkalimetallen jeweils ein Stück ab, das sie Größe eines Würfels mit der Kanten-Länge 3 mm nicht überschreitet (versuchen Sie, jeweils gleiche Größe zu erreichen) und gibt es ins Wasser.

NICHT ZUECKEN!

Schützen Sie die Reaktionsdauer ab und vergleichen Sie sie bei den drei Metallen.

Beobachtung:
Alkalimetalle reagieren heftig mit Wasser. Phenolphthalein färbt sich rot.
Deutung:
Es entstehen im End-Effekt Alkalihydroxide, die basisch reagieren:

\[
2M + 2H_2O \rightarrow 2MOH + H_2 \quad \text{d}H_{\text{(Na)}}=280 \text{kJ/mol}
\]

Entsorgung:
E15: Setzen Sie den Deckel auf die Petrischalen und schwenken Sie sie um, damit verspritzte Metall-Reste abreagieren können.
E2: Reste vom Schneiden: Natrium und Lithium in Ethanol, Kalium in Isopropanol abreagieren lassen.

Quelle:
Schulbücher, ergänzt durch Wagner, Didaktik der Chemie, Universität Bayreuth

Diskussion:
Overhead-Projektion mit Blende.
Woraus besteht der zu beobachtende Rauch?
Warum beobachtet man Flammen-Erscheinung?
Rückschlüsse über Reaktivitätsabstufung.

Didaktischer Hinweis:
Abgedeckte Petrischalen führten bei Kalium zu kleinen Explosionen (Wasserstoff!), deshalb empfiehlt sich die Durchführung im Abzug bei offenen Schalen.
10. Wasser / Termin: 30.06.2020

10.1 Temporäre Wasserhärte

Zeitbedarf: 10 Minuten, Lernende,

Kompetenz/Ziel:
F: Calcium-Empfindlichkeit des Tensids Seife.
Temporäre und permanente Wasserhärte
B: Kesselstein-Bildung, Verkalken von Heizschlangen

Material:
- 2 Reagenzgläser, d= 18 mm
- Stopfen, für Reagenzglas
- Reagenzglas-Klammer
- Reagenzglas-Gestell
- Brenner, Feuerzeug

Chemikalien:
- Calciumhydrogencarbonat-Lösung
- Seifenlösung nach Boutron-Boudet

Vorbereitung:
Calciumhydrogencarbonat-Lösung herstellen:
250 mL Kalkwasser in eine Waschflasche füllen und ca. 15 Minuten lang Kohlenstoffdioxid über einen Fritten-Einsatz durchleiten (die Trübung vom Beginn verschwindet wieder).

Durchführung 1:
10 mL Calciumhydrogencarbonat-Lösung kocht man mit einem Siedesteinchen im Reagenzglas 1 ca. 1 Minute lang auf, lässt es abkühlen.
Jetzt 2 mL Seifenlösung zugeben und schütteln. Beobachtung?

Durchführung 2:
10 mL Calciumhydrogencarbonat-Lösung werden im Reagenzglas 2 mit 2 mL Seifenlösung versetzt und geschüttelt. Beobachtung?

Beobachtung:
Die Lösung in Reagenzglas 1 schäumt, in Reagenzglas 2 nicht.

Deutung:
- Kochen beseitigt die temporäre Wasserhärte:
\[
\text{Ca(HCO}_3\text{)}_2 \rightarrow \text{CaCO}_3(s) + \text{H}_2\text{O} + \text{CO}_2(g)
\]
- Ca$^{2+}$ stehen für die Reaktion mit Seifen-Anionen nicht zur Verfügung: sie können alle Tensid-Wirkung entfalten.
- Die Ca$^{2+}$-Ionen der temporären Wasserhärte fällen Kalkseife aus und entziehen der Lösung Seifen-Anionen
\[
2\text{R-COO}^- + \text{Ca}^{2+} \rightarrow (\text{R-COO})_2\text{Ca}(s)
\]
- Sie stehen für Tensid-Wirkung nicht mehr zur Verfügung.

Entsorgung: E1

Quelle: Schulbücher
10.2 Permanente Wasserhärte

Zeitbedarf: 15 Minuten, Lernende, n
Kompetenz/Ziel:
F: Calcium-Empfindlichkeit des Tensids Seife.
Wasser-Enthärtung durch Base.

Material:
- 3 Reagenzgläser, d= 18 mm
- Reagenzglas-Gestell
- Reagenzglas-Klammer
- Stopfen, für Reagenzglas
- Brenner, Feuerzeug

Chemikalien:
- Calciumsulfat-Lösung (Gipswasser) gesättigt
 CAS-Nr.: 10101-41-4
- Seifenlösung nach Boutron-Boudet
- Peleusball
- Folienstift
- Siedesteinchen
- 2 Mess-Pipetten, 2 mL
- Mess-Pipette, 5 mL
- Natriumcarbonat-Lösung (Soda-Lösung)
 c= 1 mol/L
 CAS-Nr.: 497-19-8

Achtung
H319
P305+P351+P338

Durchführung 1:
5 mL Gipswasser werden in Reagenzglas 1 mit 2 mL Seifen-Lösung versetzt und geschüttelt. Beobachtung?

Beobachtung 1:
Lösung in Reagenzglas 1 schäumt schwach.

Deutung 1:
In Lösung sind viele Ca\(^{2+}\) vorhanden, die Seifen-Anionen ausfallen.

Durchführung 2:
5 mL Gipswasser werden in Reagenzglas 2 aufgekocht (Siedesteinchen), abgekühlt und mit 2 mL Seifen-Lösung geschüttelt. Markieren Sie die Höhe der Schaum-Säule.

Beobachtung 2:
Lösung in Reagenzglas 2 schäumt schwach, genauso wie in Reagenzglas 1.

Deutung 2:
Die Wasserhärte, die (u.a.) auf Gips zurückzuführen ist, lässt sich durch Abkochen nicht beeinflussen.

Durchführung 3:
5 mL Gipswasser werden mit 2 mL Soda-Lösung und mit 2 mL Seifen-Lösung versetzt, dann geschüttelt. Markieren sie die Höhe der Schaum-Säule.

Beobachtung 3:
Lösung in Reagenzglas 3 schäumt stark.

Deutung 3:
Es entsteht das schwer lösliche Calciumcarbonat, wodurch Ca\(^{2+}\)-Ionen nicht mehr zur Reaktion mit Seifen-Anionen zur Verfügung stehen.

Entsorgung: E1
Quelle: Schulbücher
Diskussion: Die Höhe der Schaum-Säule lässt Rückschlüsse über die Wasserhärte zu. Soda als historisch erstes Wasser-Enthärtungsmittel.
10.3 Bestimmung der Gesamthärte mit Titriplex D!

Zeitbedarf: 20 Minuten, Lernende, 1

Kompetenz/Ziel:
F: Wasserhärte
E: Volumetrische Verfahren der quantitativen Analytik

Material:
- Erlenmeyerkolben, 250 mL
- Magnetrührer, regelbar
- Magnetrührstäbchen und –Entferner
- Stativ, Büretten-Klemme
- Messzylinder, 100 mL
- Trichter
- Pasteur-Pipette, Hütchen
- Bürette, 50 mL

Chemikalien:
- Titriplex B-Lösung
- Wasser mit ca. 25°dH (künstlich)
- Indikator-Puffer-Tabletten
- Ammoniak-Lösung
 \[w = 25\% \text{ (konz.)} \]
 \[\text{CAS-Nr.: } 1336-21-6 \]
 Gefahr
 H290, H314, H335, H400
 P260, P273, P280, P301+P330+P331, P303+P361+P353,
 P305+P351+P338

Durchführung:
Man gibt 100 mL Wasser in den Erlenmeyerkolben, löst darin unter kräftigem Rühren die Indikator-Puffer-Tablette und gibt einige Tropfen Ammoniak-Lösung zu (Ammoniak im Abzug handhaben), bis sich der Indikator nach rot verfärbt. Mit Hilfe der Bürette tropft man langsam die Titriplex B-Lösung zu, bis ein Farbumschlag nach grün eintritt.

Beobachtung:
Farbumschlag nach grün.

Auswertung:
Bei dieser Proben-Menge entspricht 1 mL Verbrauch 1°dH.

Deutung:
Für genaue Härte-Bestimmungen (führen wir hier nicht durch) wird 3-5mal gemessen und die Werte ermittelt.

Entsorgung: E1

Quelle:
Merck Aquaquant Anleitung zu den Chemikaliensätzen.
11. Elektrochemie / Termin: 30.06.2020

11.1 Lösungstensionsreihe

Zeitbedarf: 10-15 Minuten, je nach Zahl der Metalle, Lernende, 1
Kompetenz/Ziel:
F: Edle/unedle Metalle, E: Spannungsreihe der Metalle

Material:
- 4 Bechergläser, 25mL
- Sandpapier
- 4 Stücke Magnesium-Band
 CAS-Nr.: 7439-95-4
- 4 Silber, Blech
 ca. 0,5*5 cm
- 4 Kupfer-Folie
 ca. 0,5*5 cm
- 4 Zink, Blech
 ca. 0,5*5 cm
- 4 Eisen, Folie
 ca. 0,5*5 cm
- Fliese als Unterlage
- VE-Wasser
- Magnesiumsulfat-Lösung
 c= 1 mol/L
 CAS-Nr.: 10034-99-8

Chemikalien:
- Silbernitrat-Lösung
 c= 0,1 mol/L
 CAS-Nr.: 7761-88-8
 Achtung
 H290, H315, H319, H410
 P273, P302+P352, P305+P351+P338
- Zinksulfat-Lösung
 c= 1 mol/L
 CAS-Nr.: 7446-20-0
 Gefahr
 H302; 318, H410
 P273, P280, P305+P351+P338, P313
- Kupfer(II)-sulfat-Lösung
 c= 1 mol/L
 CAS-Nr.: 7758-99-8
 Gefahr
 H302, H315, H318, H410

Durchführung:

Beobachtung:

<table>
<thead>
<tr>
<th></th>
<th>Mg^{2+}</th>
<th>Cu^{2+}</th>
<th>Ag^{+}</th>
<th>Zn^{2+}</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mg</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cu</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ag</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Zn</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fe</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Deutung: Magnesium > Zink > Eisen > Kupfer > Silber
Quelle: Schulbücher
Diskussion: „Lösungstensionsreihe“ mündet historisch in die Spannungsreihe. „Elektronen-Druck“ und „Elektronen-Sog“
11.2 Die Spannungsreihe der Metalle

Zeitbedarf: 10 Minuten, Lernende, n
Kompetenz/Ziel:
F: Edle und unedle Metalle
E: Spannungsreihe der Metalle

Material:
- Becherglas, 250 mL
- Multimeter
- je 1 Krokodil-Klemme, rot und schwarz
- je 1 Kabel, blau und rot

Chemikalien:
- Natriumchlorid-Lösung
 c= 1 mol/L
 CAS-Nr.: 7647-14-5
- Blechstreifen (8x12 cm) bzw. Drähte aus:
 - Zink
 - Kupfer
 - Nickel
 - Magnesium
 - Silber
 - Edelstahl

Durchführung:

Beobachtung:
Für Bezugsmetall Kupfer:

\[
\begin{align*}
\text{Mg} & < \text{Zn} < \text{Fe} < \text{Cu} < \text{Ag} \\
\text{ca. } & -2,4 \text{ V } -1,0 \text{ V } 0 \text{ V } 0 \text{ V } +0,4 \text{ V}
\end{align*}
\]

Eisen liefert vielfach keinen stabilen Messwert, daher als Bezugsmetall nicht geeignet.

Deutung:

______________ sind edler, ______________ unedler als das Bezugsmetall.

Lit.: E0(Mg, Zn, Fe, Cu, Ag)= -2,4 V, -0,76 V, -0,44 V, +0,35 V, +0,81 V

Entsorgung: E8, B1

Quelle:

Diskussion:
Normalwasserstoff-Elektrode als Bezug in der Literatur. Gründe für die schwankenden Werte bei den Stahl-Arten

WWW:
http://www.seilnacht.tuttlingen.com/Lexikon/normalp.htm - Wertetabelle
11.3 Das Daniell-Element B/D!

Zeitbedarf: 10 Minuten, Lernende, 1

Kompetenz/Ziel:
- **F:** Galvanische Zellen
- **E:** Redox-Systeme als Strom-Quellen
 Elektronen-Donator-Akzeptor-Prinzip

Material:
- U-Rohr mit Diaphragma
- 4 Kabel, 2 blau + 2 rot
- Zink-Elektrode
- Kupfer-Elektrode
- Stativ, Muffe, Klammer
- Multimeter
- Elektromotor, Glockenanker Solarmotor 0,1 V/2 mA
- Stativ, Muffe, Klammer
- Multimeter
- Elektromotor, Glockenanker Solarmotor 0,1 V/2 mA

Chemikalien:
- Zinksulfat-Lösung
 - c = 1 mol/L
 - CAS-Nr.: 7446-20-0
 - Gefahr H302, H318, H410
 - P273, P280, P305+P351+P338, P313
- Kupfer(II)-sulfat-Lösung
 - c = 1 mol/L
 - CAS-Nr.: 7758-99-8
 - Gefahr H302, H315, H318, H410

Durchführung: Im rechten Schenkel des U-Rohres taucht die Zink-Elektrode (besser: gewundener Streifen, möglichst große Oberfläche) in eine 1 M Zinksulfat-Lösung.
Im linken Schenkel taucht die Kupfer-Elektrode (besser: Kupfer-Drahtnetz) in eine 1 M Kupfer(II)-sulfat-Lösung.
Zwischen die beiden Elektroden schaltet man zunächst den kleinen Elektromotor (teilweise läuft er erst nach dem Anstoßen von selbst weiter). Dann erst Voltmeter zuschalten und gemessene Werte festhalten.

Aufgabe:
Berechnen Sie die entnommene Leistung, ausgehend von einem Leerlauf-Strom des Motors von I= 10 mA.

Beobachtung:
- U=1,1 V
- I=0,01 A
- P=0,011 W

Auswertung:
- P=U*I

Deutung: Literatur:
- \(\epsilon_0(Zn) = -0,76 \text{ V} \)
- \(\epsilon_0(Cu) = +0,33 \text{ V} \)
- daher: \(U= \Delta \epsilon \)
- \(\epsilon_0= X \)

Entsorgung: E8, B1

Quelle:
11.4 Elektrolyse von Zinkiodid B/D!

Zeitbedarf: 20 Minuten, Lernende, n

Kompetenz/Ziel:
- F: Elektrolyse-Prozesse
- E: Donator-Akzeptor-Prinzip, erzwungene Redox-Reaktionen durch elektrischen Strom, reversible Redox-Reaktionen

Material:
- 2 Kohle-Elektroden
- Labor-Netzgerät
- Multimeter
- 2 Kabel, blau + rot
- U-Rohr
- Stativ, Muffe, Klammer
- Elektromotor, Glockenanker Solarmotor 0,1 V / 2 mA

Chemikalien:
- Zinkiodid-Lösung gesättigt
 CAS-Nr.: 10139-47-6
 Gefahr H314, H410
 P260, P301+P330+P331, P303+P361+P353, P305+P351+P338, P405

Vorbereitung:
Herstellung der Zinkiodid-Lösung (2 Tage vorher):
1 g feines Zink-Pulver und 1 g fein zerstoßenes Iod mischen.
Erst wenig Wasser zugeben, dann auf 100 mL auffüllen. Aufschütteln, bis die braune Iod-Farbe verschwunden ist. Vor der Verwendung abdekantieren oder filtrieren.

Durchführung 1:
Ein U-Rohr mit der Lösung füllen, in jeden Schenkel eine Elektrode einführen und eine Gleich-Spannung von ca. 10 V anlegen.

Beobachtung 1:
Kathode: grauer Überzug
Anode: braune Schlieren sinken ab

Durchführung 2:
Nach ca. 10-15 Minuten ersetzt man die Strom-Quelle durch das Voltmeter (2 V – Bereich).

Beobachtung 2:
Man misst eine Spannung von
\[U = \text{XX} \]

Deutung 2:
Die Reaktion kann nun umgekehrt ablaufen und Strom (=Elektronen) liefern.
Man erhält somit eine Sekundär-Zelle („Akkumulator“)

Entsorgung:
Zinkiodid-Lösung kann wiederverwendet werden: zurück in die Flasche

Quelle:
Diskussion:
Vergleich mit dem Experiment mit Kupferchlorid:
- Umkehrbarkeit
- Material-Ersparnis
- eine Chlor-Entwicklung

Didaktischer Hinweis:
Die Bezeichnung der Elektroden bereitet häufig Probleme:
- Die Kathode ist nicht immer der negative Pol. Wir verwenden für Schul-Zwecke stets die wissenschaftliche Strom-Richtung: man schaut hinein und sieht Elektronen herauskommen. **Kathoden sind Elektronen-Quellen.**
- Bei Sekundär-Zellen unterscheidet man die Betriebsart, die keine begrifflichen Probleme bereitet:
 a) „Strom liefern“: die Kathode liefert Elektronen.
 b) „Laden“: kehren sich die Verhältnisse um: die „ehemalige“ Kathode nimmt nun Elektronen auf.
11.5 Elektrolyse von Zinnchlorid

Zeitbedarf: 15 Minuten, Lernende, 1 Kompetenz/Ziel:
F: Galvanisieren, Kristall-Wachstum
E: Elektrolyse, anodische Oxidation

Material:
- Petrischale
- 2 Krokodil-Klemmen, rot + schwarz
Chemikalien:
- Zinn, Folie ca. 2*6 cm
- Kupfer-Folie ca. 2*6 cm
- 2 Kabel, rot + blau
- Labor-Netzgerät

Vorbereitung:

Herstellung der Zinnchlorid-Lösung:
zur 200 mL konz. Salzsäure so viele Zinn-Grana zugeben, bis sie sich nicht mehr vollständig lösen.

Durchführung:
Elektroden mit Krokodil-Klemmen versehen und in die Petrischale legen.
Mit Zinnchlorid-Lösung bedecken und Netzgerät anschließen (für Übungen mit Lernenden: Flach-Batterie 4,5 V oder 3x Akku Mignon):
Kupfer= Minus-Pol
Zinn= Plus-Pol
Spannung auf ca. 4-5 V einstellen und einschalten.
Wieder ausschalten, sobald sich wachsende Kristalle in die Nähe der anderen Elektroden geraden.

Beobachtung:
Kristalle wachsen ausgehend von der Kupfer-Kathode.

Deutung:
Es handelt sich um Zinn-Kristalle.

Entsorgung:
Zinnchlorid-Lösung wiederverwenden.

Quelle:

 Diskussion:
Projektion mit Overhead-Projektor

Didaktischer Hinweis:
Als Show-Experiment in Projektion geeignet.
11.6 „Vergolden“ einer Kupfer-Münze B/D!

Zeitbedarf: 15 Minuten; Lernende: 1
Kompetenz/Ziel:
F: Lösungstension von Metallen, Legierungen

Material:
- Brenner, Feuerzeug
- Dreibein, Drahtnetz
- Tiegelzange
- Becherglas, 50 mL
- Pulver-Spatel
- Baumwoll- oder Papiertaschen-Tuch

Chemikalien:
- verkupferte Cent-Münze
- Zink-Pulver
 CAS-Nr.: 7440-66-6

Durchführung 1:
Im Becherglas wird eine Aufschlämmung von Zink-Pulver in ca. 2-3 mL Wasser und 5-6 Plätzchen Natriumhydroxid bereitet. Dann wird eine verkupfte Münze hineingelegt und das Ganze über dem Brenner auf dem Dreibein so lange erhitzt, bis sich ein grauer Belag entstanden ist.

Beobachtung 1:
Die Münze erhält einen grauen Belag, der sich nach dem Spülen unter fließendem Wasser mit dem Tuch nach silbrig-glänzend polieren lässt. „Silber“

Deutung 1: Die Münze wird verzinkt.

Durchführung 2:
Die Münze kurz in die Brenner-Flamme halten, bis sich der Belag nach Gelb verfärbt.

Beobachtung 2:
Die Münze erhält einen goldgelben, metallischen Glanz. „Gold“

Deutung 2:
Zink- und Kupfer-Schicht legieren sich teilweise, es entsteht eine Messing-Schicht.

Quelle: unbekannt

Diskussion:

„Beweis“ für die Entstehung von Gold:

\[
OZ_{(Cu)} + OZ_{(Zn)} + OZ_{(Na)} + OZ_{(O)} + OZ_{(H)} = OZ_{(Au)}
\]

29 30 11 8 1 79

Beweggrund für das Vermischen der Metalle zur Legierung?

WWW:
Vergolden durch anstreichen mit Goldbronze
12. Organische Chemie / Termin: 07.07.2020

12.1 Destillation von zwei mischbaren Flüssigkeiten D!

Zeitbedarf: 45 Minuten, Lehrende, 1
Kompetenz/Ziel:
E: Destillation
K: Aufnahme einer Temperatur-Kurve

Material:
- Temperaturfühler und All-Chemisst
- Computer
- 2 Temperatur-Sonden
- Heizpilz
- Zweihals-Rundkolben, 250 mL
- Becherglas, 150 mL
- Liebig-Kühler mit Schläuchen
- Destillationsbrücke mit Vorstoß
- 2 Stative
- 3 Muffen, Klammern

Chemikalien:
- Gemisch Ethyenglycol : Wasser
 4:1

Vorbereitung:
- Stellen Sie im Menu Optionen – Messtakt einen Wert von 5 oder 10 Sekunden ein. Wählen Sie ein kürzeres Intervall, erhalten Sie einen sehr eckigen Temperatur-Verlauf.

Durchführung:
Aufnahme der Temperatur-Kurve:
1) Entweder CHX-Datei laden (Link siehe unten).
2) Heizpilz auf die höchste Stufe schalten. Kühlwasser nicht vergessen.
3) 1/0-Knopf anklicken.
4) Wenn der Temperatur-Verlauf die gewünschte Form bzw. der Dampf eine Temperatur von 230°C erreicht hat, 1/0-Knopf wieder anklicken.
5) Kurve unter einem Namen im gewünschten Arbeitsbereich abspeichern.
6) Beschriften Sie die Kurve, z. B. „Destillation eines Ethyenglycol-Wasser-Gemisches“, evtl. dazu Name des Experimentators.
7) X-Achse (Zeit) sinnvoll anpassen. Ergebnis etwa:

8) Wieder abspeichern.

Diskussion:
- Warum steigt die Kurve des Gemisches stetig an, die des Dampfes sehr plötzlich?
- Was geht in der Apparatur vor, wenn die Temperatur des Dampfes ca. 100°C beträgt?
- Welcher Stoff ist leichter flüchtig?
- Besteht das Destillat aus völlig reinem Wasser?
- Wie wird der Temperatur-Verlauf im Weiteren aussehen?
- Warum steigt die Temperatur des Gemisches bei gleicher Heiz-Leistung schwächer, sobald der leichter flüchtige Stoff übertritt?
- Welche Zusammensetzung muss das Gemisch haben, wenn die Kurve des Dampfes weiter ansteigt?
- Auf welche Temperatur wird die Kurve schließlich ansteigen (der Siedepunkt von Ethylenglycol liegt bei 198°C)?
12.2 Darstellung von Methan oder Ethin D!

Zeitbedarf: 15 Minuten, Lernende, a

Kompetenz/Ziel: F: Darstellung und Eigenschaften von Methan bzw. Ethin

Material:
- Standkolben 100 mL
- Tropftrichter mit Druck-Ausgleich
- Brenner, Feuerzeug
- Dreibein, Drahtnetz
- 2 Stative, Muffen, Klammmern
- Gas-Ableitungsrohr
- Schlauch-Stücke
- pneumatische Wanne
- Standzylinder 250 mL
- Abdeckscheibe
- Pulver-Spatel
- Kerze am Draht
- VE-Wasser
- Salzsäure
c= 2 mol/L
CAS-Nr.: 7647-01-0

Chemikalien:
- Aluminiumcarbid
CAS-Nr.: 1299-86-1

Vorbereitung:
Abbaraduhr (fränkisch) laut Skizze aufbauen

Durchführung 1a: Methan
Ca. 1 Spatel voll Aluminiumcarbid im Kolben vorlegen, dann langsam (!!) Salzsäure Zutropfen und das entstehende Gas unter Wasser in einem Standzylinder auffangen. Bis zum Reaktionsbeginn muss manchmal schwach erwärmt werden. Tot-Volumen beachten.

Beobachtung 1a:
Es entsteht ein farbloses Gas

Deutung 1a:
\[\text{Al}_4\text{C}_3 + 12\text{HCl} \rightarrow 3\text{CH}_4 + 4\text{AlCl}_3 \]
\(\text{Al}_4\text{C}_3\) enthält \(\text{C}^4-\)-Anionen

Durchführung 1b: Ethin
Ca. 1 Spatel von Calciumcarbid im Rundkolben vorlegen, dann langsam Wasser Zutropfen und das entstehende Gas unter Wasser in einem Stand-Zylinder auffangen. Totvolumen beachten.

Beobachtung 1b:
Es entsteht ein farbloses Gas.

Calciumcarbid
CAS-Nr.: 75-20-7

Achtung
H260, H315, H318, H335
P223, P231+P232, P370+P378, P422, P261, P280

Gefahr
H228, H261, H315, H319, H335
P231, P232, P261, P305+P351+P338, P422

P261, P280
Deutung 1b:

\[\text{CaC}_2 + \text{H}_2\text{O} \rightarrow \text{H}_2\text{C}_2 + 4\text{CaO} \]

\(\text{CaC}_2 \) enthält \(\text{C}^2- \)-Anionen

Durchführung 2: NICHT bei Ethin
In den nun gasgefüllten, umgekehrt in ein Stativ eingespannten Sand-Zylinder wird eine Kerze (am Draht) eingeführt.

Beobachtung 2:
Das farblose Gas brennt an der Zylinder-Öffnung, die Kerze geht aus, wenn sie weiter eingeschoben wird und entzündet sich wieder, wenn sie durch die Flammen-Zone nach unten gezogen wird. Ethin ruft stark.

Deutung 2:
Methan und Ethin sind brennbar, unterhalten aber die Verbrennung nicht.

Entsorgung:
E15, B1

Quelle:
Schulbücher

Didaktischer Hinweis:
Als Erweiterung kann ein zweiter Zylinder mit Gas gefüllt werden. Mit einer Pipette ca. 5mL Brom-Wasser einfüllen und abgedeckt intensiv schütteln.
Bei Methan keine Veränderung sichtbar, bei Ethin langsame Entfärbung.
Methan reagiert nicht mit Brom, Ethin kann es an die Dreifach-Bindung addieren.
12.3 Nachweis von Ethanol

Zeitbedarf: 5 Minuten, Lernende, 1

Kompetenz/Ziel:
E: Praktische Verwendung chemischer Reaktionen
B: Vergleich chemischer mit elektronischen Messungen

Material:
- elektronisches Alkohol-Testgerät
 ACE 3000

Chemikalien:
- Spirituosen (Schnaps, Bier, Wein)
- Alcotest-Röhrchen

Durchführung 1: historisch
Eine Test-Person (Lehrende, Grins) nimmt einen Schluck alkoholhaltiges Getränk zu sich und pustet nach Vorschrift in das Test-Röhrchen.

Beobachtung 1:
Das gelbe Salz verfärbt sich nach grün.

Deutung 1:
Reaktionsgleichung:

\[4\text{CrO}_4^{2-} + 3\text{Et-} \text{OH} + 20\text{H}_3\text{O}^+ \rightarrow 4\text{Cr}^{3+} + 3\text{Me-COOH} + 33\text{H}_2\text{O} \]

Entsorgung 1:
E16 (enthält Kaliumdichromat; Reduktion bis Cr\(^{3+}\), dann in B1

Quelle:
Anleitung zu Alcotest-Röhrchen, Firma Dräger (siehe URL unten)

Durchführung 2: modern
Eine Test-Person (wieder Lehrende) nimmt einen Schluck alkoholhaltiges Getränk zu sich und pustet nach Vorschrift in die entsprechende Öffnung des Alkohol-Testgerätes (Mundstück verwenden)

Beobachtung 2:
Das Gerät zeigt einen Wert an.

Quelle:
Anleitung zum Alkohol-Testgerät (z. B. ACE 3000)

Diskussion:
Halbquantitatives Verfahren ab 0,3 Promille (1L Luft).
Welchen Fehler macht man, wenn man gleich nach dem Trinken bläst?
Warum ist der Kunststoff-Beutel nötig (historisches Verfahren)?
Kosten der Test-Methoden?

WWW:
http://www.alkomat.net/preisrange.php, Quelle für elektronische, bezahlbare und hinreichend genaue Geräte.
12.4 Nachweisreaktionen fkt. Gruppen org. Moleküle

Zeitbedarf: 15 Minuten, Lernende, 1

Kompetenz/Ziel:
F = Funktionelle Gruppen organischer, sauerstoffhaltiger Verbindungen,
E = Planung einer Versuchsreihe mit Kontrollversuch

Material:
- Reagenzglas-Gestell
- Reagenzglas
- Tüpfelplatte
- Pasteur-Pipetten, Hütchen
- Zahnstocher
- Spatel
- 5 Stück 50mL Tropfflaschen PET
- (Fein-) Waage und Wägepapier
- Messzylinder 50mL

Chemikalien:
- **Ethanol** (Spiritus)
 CAS-Nr.: 64-17-5
 Gefahr
 H225, H319
 P210, P240, P305+P351+P338, P403+P233
- **Essigsäureethylester**
 CAS-Nr.: 141-78-6
 Gefahr
 H225, H319, H336
 EUH066
 P210, P233, P240, P305+P351+P338, P403+P235
- **Thymolphthalein-Lösung**
 w=0,1% (Ethanol)
 CAS-Nr.: 125-20-2
 Gefahr
 H225, H319
 P210, P241, P280, P303+P361+P353, P305+P351+P338, P501
- **VE-Wasser**
- **Natronlauge**
 c= 3mol/L
 CAS-Nr.: 1310-73-2
 Gefahr
 H290, H314
 P280, P308+P310, P303+P361+P353, P305+P351+P338
- **Ammoniumcer(IV)-nitrat-Lösung**
 w=10% (Salpetersäure, c= 2mol/L)
 CAS-Nr.: 1677-21-3
 Gefahr
 H272, H302, H314
 P221, P280, P308+P310, P301+P330+P331, P305+P351+P338
- **Bromthymolblau-Reagenz**
 (BTB-Reagenz)
- **Ethansäure** (Essigsäure)
 w=5%
 CAS-Nr.: 64-19-7

Durchführung 1:
Rojahn-Test – Nachweis für Ester-Gruppen:
Zu 1mL vergällt Ethanol 1mL Prüf-Substanz (Essigsäureethylester) und 3 Tropfen Thymolphthalein-Lösung geben. Dann tropfenweise unter ständigem Schütteln Natronlauge zugeben, bis eine bleibende Blau-Färbung eintritt. Das Gemisch über der nichtrauschenden, nicht-leuchtenden Brenner-Flamme vorsichtig erwärmen, dabei **nicht sieden** lassen! Siede-Verzug beachten! Als negative Blind-Probe den Versuch mit 1mL Wasser statt der Probe-Lösung wiederholen.

Durchführung 2:
„Cernitrat“ – Nachweis für Hydroxy-Gruppen:
In einem Feld der Tüpfel-Platte 1 Tropfen Probe-Lösung (Ethanol) mit 1 Tropfen „Cernitrat-Reagenz“ (Ammoniumcer(IV)-nitrat-Lösung) vermischen und beobachten. Zum Vergleich ein einem zweiten Tüpfel-Feld 1 Tropfen VE-Wasser mit 1 Tropfen Cernitrat-Reagenz vermischen (negative Blind-Probe).
Durchführung 3:
BTB-Test – Nachweis für Carboxy-Gruppen:
In einem Tüpfel-Feld 3 Tropfen BTB-Reagenz (Bromthymolblau-Lösung) mit 3 Tropfen Probe (Ethansäure verd.) versetzen und gut Rühren. Die negative Blind-Probe mit Wasser statt Probe durchführen.

Beobachtung 1:
Bei der negativen Blind-Probe bleibt die Blau-Färbung auch nach dem Erwärmen bestehen. Bei einem positiven Verlauf mit Essigsäureethylester entfärbt sich die Lösung.

Beobachtung 2:
Bei der negativen Blind-Probe bleibt die gelbliche Eigen-Farbe der Cernitrat-Lösung bestehen. Bei einem positiven Test-Verlauf mit Ethanol färbt sich die Lösung Rostrot.

Beobachtung 3:

Deutung / chemische Grundlagen:

Deutung 1:
Mit dem Rojahn-Test können funktionelle Ester-Gruppen nachgewiesen werden:

\[
\text{\text{ROC} = OCH}_3
\]

Deutung 2:
Mit dem Cernitrat-Test können funktionelle Hydroxy-Gruppen nachgewiesen werden:

\[
\text{R} \overset{\text{O}}{\text{H}}
\]

Die Farb-Reaktion beruht auf einer Liganden-Austausch-Reaktion im Ammonium-Cer(IV)-nitrat-Molekül, so dass sich der ursprüngliche orangerote Komplex in einen anderen Komplex umwandelt, der dunkelrote Färbung hervorruft.

Deutung 3:
Mit dem BTB-Test können funktionelle Carboxy-Gruppen nachgewiesen werden:

\[
\text{R} \overset{\text{O}}{\text{C}} \overset{\text{OH}}{\text{H}}
\]

\[
\text{Ind}^- \overset{\text{H} + \text{OH}^-}{\Rightarrow} \text{Ind}^- \overset{\text{H}_2\text{O}}{\Rightarrow} \text{gelb} \quad \text{blau}
\]

Entsorgung:
Organischer, flüssiger Abfall

Quelle:
12.5 Darstellung und Nachweis von Alkanalen

Zeitbedarf: 15 Minuten, Lernende, n

Kompetenz/Ziel:
- F: Oxidationsprodukte der Alkanole
- E: Redox-Gleichungen in der OC

Material:
- Erlenmeyerkolben, 100 mL
- Dreibein, Drahtnetz
- Brenner, Feuerzeug
- Siedesteinchen
- Becherglas, 50 mL
- Tiegelzange
- Kupfer-Drahtnetzrolle
- Draht mit Haken

Chemikalien:
- **Spiritus** (Ethanol)
 - CAS-Nr.: 64-17-5
 - Gefahr: H225, H319
 - Gefahr: P210, P240, P305+P351+P338, P403+P233
- **SCHIFF’S REAGENZ**
 - Fuchsin-schweflige Säure
 - Gefahr: H350
 - Gefahr: P281, P308+P313

Durchführung:

Beobachtung:
Es entsteht ein stechend riechendes Produkt, das fuchsinschweflige Säure von farblos nach rot umfärbt.

Deutung:
Alkanole lassen sich oxidieren.

Teil Gleichung für die Oxidation:

\[R-\text{CH}_2-\text{OH} + 2\text{H}_2\text{O} \rightarrow R\text{CHO} + 2\text{e}^- + 2\text{H}_2\text{O} \]

Entsorgung:
E10, B3

Quelle:
Schulbücher

Diskussion:
Variante mit Methanol: Vergleich der Toxizität der Produkte
12.6 Weitere Nachweise für Alkanale

Zeitbedarf: 20 Minuten, Lernende, n

Kompetenz/Ziel:
F: Kohlenhydrate enthalten die Carbonyl-Gruppe
E: Redox-Reaktionen und –Gleichungen in der OC

Reduzierende und nicht reduzierende Zucker

Material:
- 6 Reagenzgläser, d= 18 mm
- Reagenzglas-Gestell
- Reagenzglas-Klammer
- Dreibein, Drahtnetz
- Brenner, Feuerzeug
- 2 Pasteur-Pipetten
- Becherglas, 250 mL

Chemikalien:
- Saccharose (Haushaltszucker) CAS-Nr.: 57-50-1
- Glucose (Traubenzucker) CAS-Nr.: 50-99-7
- Natronlauge c= 0,1 mol/L CAS-Nr.: 1310-73-2
- Fehling I-Lösung
- Fehling II-Lösung

Durchführung 1:
Man stellt in 3 Reagenzgläser zunächst einige mL Fehling-Lösung her (Verhältnis I:II 1:1) und gibt dann 5 Tropfen Ethanal bzw. Glucose- bzw. Saccharose-Lösung zu, schüttelt und erhitzt ggf. vorsichtig.

Beobachtung 1:
Aus der klaren blauen Lösung entsteht mit Glucose ein ziegelroter Niederschlag. Mit Saccharose ergibt sich keine Veränderung.

Deutung:
Reaktionsgleichung im basischen Milieu:

$$ R-CHO + 2Cu^{2+} + 4OH^- \rightarrow R-COOH + Cu_2O + 2H_2O $$

Entsorgung:
B1

Quelle:
Schulbücher

Diskussion:
Ist das ein spezifischer Nachweis?

Didaktischer Hinweis:
- Fehling-Lösung I: Kupfersulfat-Lösung w= 4%
- Fehling-Lösung II: 75 g Natriumhydroxid + 100 g Kaliumnatriumtaträt in 500 mL Wasser
12.7 Bestimmung der Siedetemperatur von Alkanolen

Zeitbedarf: ca. 20 Minuten; Lernende, n
Kompetenz/Ziel:
F = Siedetemperatur in Abhängigkeit des Alkylrests
E = Bestimmung der Siedetemperatur im Microscale-Maßstab

Material:
- Reagenzglas 16mm
- 5 Pasteurpipetten
- Pipettenhütchen
- Multimeter mit NiCrNi-Draht-Temperaturfühler
- Plastikspritze 1mL
- Kanüle (rosa) 1,2mmx4mm
- Gasbrenner
- Reagenzglashalter
- Reagenzglasständer
- (Proxxon) Microgasbrenner
- Pinzette schmal

Chemikalien:
- Methanol
 Cas-Nr.: 67-56-1
 Gefahr: H225, H331-311-301, H370
 P210, P240, P280, P302+352, P304+340, P308+310, P403+233
- Ethanol
 Cas-Nr.: 64-17-5
 Gefahr: H225, H319
 P210, P240, P305+P351+P338, P403+233
- VE-Wasser
 Cas-Nr.: 71-23-8
 Gefahr: H225, H318, H336
 P210, P240, P280, P305+351+338, P313, P403+233
- Propan-1-ol
 Cas-Nr.: 67-63-0
 Gefahr: H225, H319, H336
 P210, P233, P240, P305+351+338, P403+235
- Propan-2-ol
 Cas-Nr.: 71-23-8
 Gefahr: H225, H318, H336
 P210, P240, P305+351+338, P403+233

Vorbereitung:
Zwei Pasteurpipetten werden mit einem Micro-Gasbrenner an der Verengung so abgeschmolzen, dass sie als Mini-Reagenzgläser verwendbar sind. Die dabei abgetrennte Pipettenkapillare (Länge ca. 1,5 cm) sollte auf einer Seite ebenfalls abgeschmolzen sein.
Sollen mehrere Siedetemperatur-Bestimmungen hintereinander durchgeführt werden, ist es sinnvoll einen Vorrat an Mini-Reagenzgläsern und Kapillaren anzulegen.

Durchführung 1:
In eines der beiden Mini-Reagenzgläser wird der NiCrNi-Temperaturfühler so eingeführt, dass der Sensorkopf in der Reagenzglasspitze zu liegen kommt. (Durch eine lockeren Knoten im Sensorkabel, der in den oberen Bereich des Mini-Reagenzglases eingeschoben wird, lässt sich der Sensorkopf in dieser Position fixieren).
Ein weiteres der Mini-Reagenzgläser wird mit Hilfe einer Spritze mit etwa 0,5 ml eines Alkanols, z. B. Ethanol, und mit einer Kapillare (ca. 1,5 cm, zugeschmolzenes Ende zeigt nach oben) beschickt (ggf. mit Pinzette).
Im großen Reagenzglas (16mm) werden ca. 5 ml Wasser zum Sieden erhitzt, dann zügig das Mini-Reagenzglas mit dem Alkanol und ein mit einem Mini-Reagenzglas umhüllter NiCrNi-Fühler werden auf gleicher Höhe in das Reagenzglas mit dem siedenden Wasser tauchen und das Erhitzen stoppen.

Beobachtung 1:

<table>
<thead>
<tr>
<th>Alkanol</th>
<th>experimentell ermittelte Siedetemperatur δ_b</th>
<th>Literaturwert (aus Römpp-Chemielexikon)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Methanol</td>
<td>65 °C</td>
<td>64,5 °C</td>
</tr>
<tr>
<td>Ethanol</td>
<td>78 °C</td>
<td>78,2 °C (95,57 %iges Azeotrop)</td>
</tr>
<tr>
<td>Propan-1-ol</td>
<td>97 °C</td>
<td></td>
</tr>
<tr>
<td>Propan-2-ol</td>
<td>80 °C</td>
<td>82 °C</td>
</tr>
</tbody>
</table>

Deutung 1:

In dem Augenblick, in dem keine Alkanol-Gasbläschen mehr aus der Kapillare austreten, sondern wieder Flüssigkeit in das Röhrchen eindringen kann, ist die Siedetemperatur erreicht, der Dampfdruck ist gleich dem Außendruck.

Diskussion:

Dieser Versuch kann nach der Microscale-Destillation eines alkoholhaltigen Gemischs ange- schlossen werden.

Entsorgung:

Ethanol verdünnt in den Ausguss, Methanol, Propan-1-ol und Propan-2-ol in den organischen Sammelbehälter.

Quelle:

Viktor Obendrauf „Zeitsparende Schulchemie in kleinen Mengen“; Skript zum 4. Experimentalseminar des VCÖ, 2004 S. 8
12.8 Darstellung von Frucht-Estern D!

Zeitbedarf: 15 Minuten, Lehrende, n
Kompetenz/Ziel:
F: säurekatalysierte Veresterung
E: Bedeutung von Estern im Alltag

Material:
- 4 Reagenzgläser, d= 18 mm
- Reagenzglas-Gestell
- Reagenzglas-Klammer
- Stopfen für Reagenzglas
- Spatel
- Pasteur-Pipette
- Brenner, Feuerzeug
- 4 Bechergläser, 150 mL
- Filterpapier

Chemikalien:
- Schwefelsäure (konz.)
 w= 96%
 CAS-Nr.: 7664-93-9
 Gefahr
 H290, H314
 P280, P301+P330+P331, P305+P351+P338, P308+P310
- Buttersäure
 CAS-Nr.: 107-92-6
 Gefahr
 H302, H314
 P260, P280, P301+P330+P331, P303+P361+P353, P304+P340+P310, P305+P351+P338, P310
- Essigsäure (Eisessig)
 w= 100%
 CAS-Nr.: 64-19-7
 Gefahr
 H226, H290, H314
 P210, P280, P301+P330+P331, P305+P351+P338, P308+P310
- 1-Butanol
 CAS-Nr.: 71-36-3
 Gefahr
 H226, H302, H318, H315, H335, H336
 P210, P208, P302+P352, P304+P340, P305+P351+P338, P313

Durchführung 1:
Im Reagenzglas werden eine Spatel-Spitze Benzoesäure und ca. 3 mL Ethanol vermischt und vorsichtig mit der Pipette unter Schütteln 10 Tropfen Schwefelsäure zugesetzt. Dann erwärmt man unter leichtem Schütteln über kleiner Brenner-Flamme und gießt den Inhalt in ein Becherglas mit 100 mL Wasser.

Geruchsprobe: am Filterpapier, das mit dem Rand etwas in die auf dem Wasser schwimmende Fraktion getaucht wurde.

Beobachtung 1:
Es sammelt sich eine dünne Fraktion auf der Wasser-Oberfläche.
Geruch erinnert an Nelken
Durchführung 2:
In das 2. Reagenzglas werden etwa gleiche Mengen (z. B. ca. 1 mL + 1 mL) Butanol und Essigsäure gegeben, dann mit der Pipette unter Schütteln 20 Tropfen Schwefelsäure zugesetzt. Man erwärmt unter leichtem Schütteln über kleiner Brenner-Flamme und führt laufend (durch Fächeln) Geruchsproben durch. Zum Schluss gießt man den Inhalt in ein Becherglas mit 100 mL Wasser.
Letzte Geruchsprobe: am Filterpapier, das mit dem Rand in die auf dem Wasser schwimmende Fraktion getaucht wurde.

Beobachtung 2:
Geruch erinnert an Banane.

Durchführung 3:
In das 3. Reagenzglas werden ca. 1 mL Buttersäure und ca. 1 mL Ethanol gegeben, dann etwa 1 mL Schwefelsäure zugesetzt. Mit dem Stopfen verschließen und schütteln. Nach ca. 1 Minute den Inhalt in das Becherglas mit 100 mL Wasser gießen.
Geruchsprobe: am Filterpapier, das mit dem Rand in die auf dem Wasser schwimmende Fraktion getaucht wurde.

Beobachtung 3:
Der Geruch erinnert an Ananas.

Durchführung 4:
In das 4. Reagenzglas werden ca. 1 mL Ameisensäure und ca. 1 mL Ethanol gegeben, dann etwa 1 mL Schwefelsäure zugesetzt. Mit dem Stopfen verschließen und schütteln. Nach ca. 1 Minute den Inhalt in das Becherglas mit 100 mL Wasser gießen.
Geruchsprobe: am Filterpapier, das mit dem Rand in die auf dem Wasser schwimmende Fraktion getaucht wurde.

Beobachtung 4:
Der Geruch erinnert an Rum.

Deutung:
Es entsteht:
- Benzoesäureethylester (Sdp.: 213,9°C, Nelke)
- Essigsäurebutylester (Sdp.: 126°C, Banane)
- Buttersäureethylester (Sdp.: 122°C, Ananas)
- Methansäureethylester (Sdp.: 54°C, Rum)

Entsorgung:
E10, B3

Quelle:
verschiedene Quellen, angepasst.

Diskussion:
Präsentation?
Geruch mit Erwartungen identisch?
Ein Ester macht noch kein Aroma (alte mesopotamische Weisheit).
12.9 Nylon-Herstellung (wird nicht durchgeführt)

Zeitbedarf: 20 Minuten

Kompetenz/Ziel:
- **F:** Kunststoffe durch Polykondensation
- **E:** Bildung von Makromolekülen aus bifunktionellen Molekülen
- **B:** Bewertung von Kunststoff-Eigenschaften

Material:
- 2 Bechergläser, 250 mL
- Glasstab
- Pinzette
- Holz-Stäbchen
- Zeitung

Chemikalien:
- **Benzin (Petrolether)**
 - Siedebereich 100-140°C
 - CAS-Nr.: 64742-49-0
 - Gefahr: H225, H304, H315, H336, H411
 - P201, P210, P301+P310, P331, P370+P378, P501

- **Phenolphthalein-Lösung**
 - ethanolisch (Indikator)
 - w= 1%
 - CAS-Nr.: 77-09-8
 - Gefahr: H350, H226, H319, H341
 - P201, P210, P305+P351+P338, P308+P313

- **Adipinsäuredichlorid**
 - CAS-Nr.: 124-04-9
 - Gefahr: H319
 - P305+P351+P338

- **1,6-Diaminohexan**
 - (Hexamethylendiamin)
 - CAS-Nr.: 124-09-4
 - Gefahr: H302, H314, H335
 - P261, P280, P305+P351+P338, P310

- **Natriumhydroxid**
 - CAS-Nr.: 1310-73-2
 - Gefahr: H290, H314
 - P280, P301+P330+P331, P305+P351+P338, P308+P310

Vorbereitung:
Diamin ca. 30 Minuten vor Versuchsbeginn in warmes Wasser stellen (Smp.: 68°C), damit es erweicht und leichter entnommen werden kann.

Durchführung:
In einem Becherglas werden 2 mL Säurechlorid in 50 mL Benzin gelöst.
Im zweiten Becherglas bereitet man eine Lösung von 0,8 g Natriumhydroxid und 2,2 g Hexamethylendiamin (falls geschmolzen tropfenweise einwiegien) in 50 mL Wasser (3 Tropfen Phenolphthalein-Lösung zugeben) und überschichtet vorsichtig mit der Säurechlorid-Lösung.
An der Phasen-Grenze entsteht eine dünne Haut, die mit der Pinzette herausgezogen werden kann.

Beobachtung:
Achtung: Zeitung unterlegen, da die abtropfende Lösung ätzend ist!
Längen-Rekord bisher: 14 m
Deutung:
Polykondensat: Nylon 6,6 oder 6,10

Entsorgung:
Rest-Lösung umrühren
Festen Teil: E3
flüssigen Teil: E10, B3

Quelle:

Diskussion:
Kritik des Ergebnisses:
zeigt das Produkt typische physikalische Eigenschaften von Nylon?

Didaktischer Hinweis:
1) Satt Adipinsäuredichlorid ergibt auch Dekandisäurechlorid (Sebacinsäuredichlorid) akzeptable Ergebnisse.
 Der Ersatz der ansonsten empfohlenen Lösemittel Tetrachlormethan sollte dringend (bzw. für Chloroform auch) erfolgen.
 Benzin ergibt etwas schlechtere, aber akzeptable Ergebnisse und ist weitgehend ungefährlich.
3) Der Versuch ist durchaus geeignet, dass Sie das Lehrziel „Demonstration des technischen Verfahrens Grenzphasen-Kondensation“ erreichen wollen.
12.10 Perlon-Herstellung B/D!

Zeitbedarf: 20 Minuten, Lehrende, 1

Kompetenz/Ziel:
F: Bedeutung der Säureamid-Bindung bei Kunststoffen (Polyamiden)
E: Verstrecktes und unverstrecktes Perlon: Struktur-Eigenschaft-Modell

Material:
- Becherglas, 25 mL
- Glasstab
- Pinzette
- Tiegelzange
- Brenner, Feuerzeug
- Dreibein, Drahtnetz
- Messer
- Zeitung

Chemikalien:
- **ε-Caprolactam** (6-Aminocaproonsäurelactam)
 - CAS-Nr.: 105-60-2
 - Achtung
 - H302, H332, H315, H319, H335
 - P302+P352, P304+P340, P305+P351+P338
- **Spiritus** (Ethanol)
 - CAS-Nr.: 64-17-5
 - Achtung
 - H225, H319
 - P210, P240, P305+P351+P338, P403+P233
 - Gefahr
 - H260, H314
 - EUH014
 - P233, P231+P323, P280, P305+P351+P338, P370+P378+P422

Durchführung 1:
In das Becherglas gibt man ca. 9 g ε-Caprolactam und fügt ein sehr kleines Stückchen Natrium (ca. 0,01 g) hinzu. Das Natrium-Körnchen sollte mit dem Glasstab tief in das Lactam eingedrückt werden. Dann schmilzt man vorsichtig den Reaktionsansatz mit nicht zu großer Flamme (Smp. ε-Caprolactam: 68-69°C).

Bei ca. 100°C reagiert das Caprolactam mit dem Natrium. Danach erhitzt man rasch und hält die Schmelze so lange am Sieden, bis die Konsistenz zäher wird (Sdp: ca. 260°C) die Dampfblasen werden merklich langsamer, die Schmelze honigfarben.

Durchführung 2:
Die erkalteten Fäden lassen sich verstrecken, wenn man an den Enden stark zieht.

Beobachten Sie die Veränderung der Faden-Stärke, evtl. über die Projektionsfläche des Overhead-Projektors. Erklärung?

Beobachtung:
Durch Ziehen kann man die Fäden strecken.
Sie sind sehr widerstandsfähig und reißen erst bei größerem Kraftaufwand.

Deutung:
Das N-Natriumsalz das Caprolactam initiiert anionisch die ringöffnende Polymerisation des Lactams.

Die Polymerisation beginnt aber erst dann, wenn die Mischung aus dem Caprolactam und seinem Natriumsalz auf ca. 250°C erhitzt wird.
Bei dieser Temperatur ist die Polymerisation nach ca. 3 Minuten beendet. Erhitzt man die Schmelze länger als 6 Minuten auf ca. 250°C, so nimmt die Viskosität merklich ab, die Schmelze ist nicht mehr verspinnbar.

Entsorgung:
Glasstab in konz. Salzsäure einweichen (evtl. mehrere Tage; besser abschneiden, verschmelzen und kürzeren Glasstab weiterverwenden).
Das Becherglas mit Perlon-Resten kann nicht gerettet werden: E3

Quelle:
???

Diskussion:
Verstrecken = Ausrichten der Polymer-Moleküle zu kristallinen Bereichen.

Hintergrund:

\[
\begin{align*}
\text{N-H} + \text{Na} &\rightarrow \text{N-H}^- + \frac{1}{2} \text{H}_2 \\
\text{R}^- + \text{C}(\text{CH}_2)_5\text{O} &\rightarrow \text{R}-(\text{CH}_2)_5\text{N}^-\text{H} \\
\text{R}-(\text{CH}_2)_5\text{N}^-\text{H} + \text{C}(\text{CH}_2)_5\text{O} &\rightarrow \text{R}-(\text{CH}_2)_5\text{N}-(\text{CH}_2)_5\text{N}^-\text{H} \\
\text{usw.}
\end{align*}
\]

Didaktischer Hinweis:
Diesen Versuch empfehlen wir als Ersatz für die Nylon-Herstellung:
12.11 Untersuchung von Kunststoffen D!

Zeitbedarf: 20 Minuten, Lernende, n

Kompetenz/Ziel:
- F: Unterschiedliche Eigenschaften von Kunststoffen
- B: Sorten-Trennung, Probleme beim thermischen Kunststoff-Recycling

Material:
- Brenner, Feuerzeug
- Becherglas, 400 mL (mit Wasser, Sicherheit)
- Indikator-Papier
- Stativ, Muffe, Klammer
- Alu-Folie als Unterlage

Chemikalien:
- Polyvinylchlorid (PVC)
- Polyethylen (PE)
- Polystyrol (PS)
- Plexiglas (PMMA)
- Polyamid (PA)
- unbekanntes Kunststoff-Stück aus dem Alltag
- Kupfer-Draht

Durchführung 1:
Die verschiedenen Kunststoff-Proben werden auf ihr Verhalten in und außerhalb der Brenner-Flamme untersucht (Brenner schräg einspannen, Alu-Folie unterlegen) und verglichen:
1) Wie leicht sind die anzünden?
2) Brennen sie von selbst weiter?
3) Tropfen und/oder rußen sie dabei?
4) Reagieren die Dämpfe sauer?
5) Riechen sie (nach dem Erlöschen) besonders?

PVC: KEIN GERUCHSTEST!

Beobachtung:

<table>
<thead>
<tr>
<th></th>
<th>brennt</th>
<th>allein</th>
<th>rußt</th>
<th>tropft</th>
<th>Geruch</th>
</tr>
</thead>
<tbody>
<tr>
<td>PE</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PVC</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>nicht riechen</td>
</tr>
<tr>
<td>PS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PMMA</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PA</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Durchführung 2:
Den Kupfer-Draht in der Brenner-Flamme erhitzen und an PVC- bzw. PE-Stäbchen halten. Dann wieder in die Flamme.
Beobachtung und Vergleich.

Deutung 2:
Beilstein-Probe auf Halogene
Entsorgung:
E3

Quelle:
Kunststoff-Koffer des VKI, Frankfurt 1994

Diskussion:
Weitere Kunststoffe
Bruchtest

Hintergrund:
- CA = Celluloseacetat
- MF = Melaminharz
- PA = Polyamid
- PE = Polyethylen
- PF = Phenolharz
- PP = Polypropylen
- PS = Polystyrol
- PVC = Polyvinylchlorid
- SI = Silicon
- UP = Polyester

Lösung:

<table>
<thead>
<tr>
<th></th>
<th>brennt</th>
<th>allein</th>
<th>rußt</th>
<th>tropft</th>
<th>Geruch</th>
</tr>
</thead>
<tbody>
<tr>
<td>PE</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>(+)</td>
<td>ausgeblasene Kerze (Paraffin)</td>
</tr>
<tr>
<td>PVC</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>NICHT RIECHEN (stechend); Test mit feuchtem Indikator-Papier</td>
</tr>
<tr>
<td>PS</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>(+)</td>
<td>süßlich („Plastik“, Styren)</td>
</tr>
<tr>
<td>PMMA</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>(+)</td>
<td>„fruchtig“ (Ester)</td>
</tr>
<tr>
<td>PA</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>verbrannte Haare</td>
</tr>
</tbody>
</table>

Didaktischer Hinweis:
Die Kunststoff-Proben stammen aus einem Kunststoff-Koffer des VKI (Verband der Kunststoff-Erzeugenden Industrie).
12.12 Herstellung von Seife B/D!

Zeitbedarf: Herstellung ca. 30 Minuten, Lernende, **n,** Reifungsprozess ca. 2 Wochen

Kompetenz/Ziel:
- **F:** Verseifung = basenkatalysierte Ester-Spaltung
- **E:** erwünschte Produkt-Eigenschaften sind oft nur durch Mischung verschiedener Komponenten erreichbar

Material:
- Griffin-Becher, 250 mL
- Magnetrührer, heizbar
- Magnetrühr-Stäbchen
- Rührstäbchen-Entferner
- Messer
- Thermometer, 150°C
- Spatel, b= 4 mm
- Pulver-Spatel
- 2 Messzylinder
- Wasserbad
- pH-Indikator-Papier
- Waage
- Wäge-Schalen
- Formen zum Gießen aus Kunststoff z. B. Joghurt-Becher oder Silicon-Formen

Chemikalien:
- Kokos-Fett (Palmin)
- Pflanzen-Fett (Biskin)
- Oliven-Öl
- Parfüm-Öl
- Pigmente oder fettlösliche Farbstoffe
- Natriumhydroxid
 - CAS-Nr.: 1310-73-2
 - Gefahr

<table>
<thead>
<tr>
<th>Gefahr</th>
<th>P280, P301+P330+P331, P305+P351+P338, P308+P310</th>
</tr>
</thead>
<tbody>
<tr>
<td>H290, H314</td>
<td></td>
</tr>
</tbody>
</table>

Durchführung: nur Oberstufe

56 g Biskin, 35 g Palmin in den Becher einwiegen, 38 mL Oliven-Öl dazugeben und im Wasserbad bei 40°C schmelzen.

Im anderen Becher 50 mL Natronlauge w= 27% zubereiten (18 g NaOH in 48 mL VE-Wasser lösen) und auf ca. 40°C abkühlen.

Auf jeden Fall jedoch Spritzen vermeiden (trotzdem Schutzbrille).

Nach Bedarf hier Pigmente zugeben.

Formen wenig einölen und im Wasserbad auf ca. 40°C vorwärmen.

Kurz vor dem Gießen nach Bedarf Parfüm-Öl zugeben und gut unterrühren.

Nach dem Gießen mind. 18 Stunden in Tücher gehüllt ruhig stehen lassen, dann offen mind. weiter 8 Stunden.

Die Seife kann jetzt aus der Form gelöst werden, sollte jedoch zur Erreichung einer festeren Konsistenz noch bis zu zwei Wochen ausreifen.

Eine gering „Asche-Bildung“ (matter Belag) kann mit einem Messer abgekratzt werden.

Beobachtung:
Das Seifen-Stück sollte homogen erscheinen.

Der pH-Wert sollte zwischen 8 und 10 liegen.

Er sinkt während der Reife-Phase noch ab.

Deutung:
Basenkatalysierte Ester-Spaltung:

\[
\text{Fett + 3NaOH} \rightarrow \text{Glycerin + 3 Salze-Fettsäure + 3H}_2\text{O}
\]
Entsorgung:
zum Waschen verwenden

Quelle:

Didaktischer Hinweis:
Rezepte aus dem WWW oder der Bastel-Branche sind stets mit großer Skepsis und Vorsicht zu behandeln:
Entweder sind die Zutaten mit (amerikanischen) Handelsnamen bezeichnet, so dass man sie kaum kaufen kann, oder es wird mit konz. Lauge sehr nachlässig umgegangen.
Stets ist ein großer Aufwand nötig, um sich einzuarbeiten, d. h. die Rezepte funktionstüchtig zu machen.

Diskussion: Vereinfachung für Grundschule
Bezug der Zutaten z. B. bei http://www.omikron-online.de/
12.13 Untersuchungen an einer PET-Flasche

Zeitbedarf: 10 Minuten, Lernende, D
Kompetenz/Ziel
E: Beziehung zwischen Eigenschaft und Struktur bei Kunststoffen

Material:
- Stativ, Muffe
- große Klammer
- dünnwandige PET-Flasche
- Heißluft-Gebläse
- All-Chem-Misst II
- Thermofühler

Aufbau:
PET-Flasche in der Nähe des Bodens ins Stativ einspannen. Schraubverschluss ggf. abnehmen. Temperatur-Fühler so befestigen, dass er die Innen-Seite der Flaschen-Wandung berührt.

Durchführung A:
Mit dem Heißluft-Gebläse auf mittlerer Stufe das Flaschen-Material am Corpus in der Gegend des Temperatur-Fühlers erwärmen.

Beobachtung 1:
Bei ca. 80-120°C zieht sich das Material zusammen

Deutung 1:
PET-Flaschen werden aus der schmelze spritzgegossen (geblasen) und schnell abgekühlt. Die Makromoleküle liegen überstreckt, nicht in der günstigsten Lage zueinander. Erwärmung bringt die erforderliche Beweglichkeit, so dass sie sich jetzt günstiger lagern können.

Beobachtung 2:
Ab ca. 170°C schmilzt das Material, ggf. entsteht ein Loch

Deutung 2:
Schmelz-Bereich laut Literatur: 235-260°C

Durchführung B:

Beobachtung:
Das Material wird trüb, verfärbt sich weiß.

Deutung:
In dem Bereich der Öffnung befinden sich Stellen dickerer Wandstärke. Hier führt die gesteigerte Beweglichkeit der Makromoleküle zu teilweiser Kristallisation (vorher: Glas). Die mikrokristallinen Bereiche sind so groß, dass sie Licht beeinflussen können, das Material verliert seine Transparenz.

Entsorgung: Kunststoff-Recycling

Quelle: Didaktik der Chemie, Universität Bayreuth

Diskussion:
Folgen für die Handhabung von PET-Gefäßen im Haushalt?

Didaktischer Hinweis:
Fälschlicherweise wird im WWW Polyethylen oft als PET bezeichnet.
13. Lebensmittel / Termin: 07.06.2020

13.1 Trüffel

Zeitbedarf: 45 Minuten, Lernende, n
Kompetenz/Ziel:
E: Emulgator-Wirkung, B: Chemie zum Wohlgeschmack von Alltagsprodukten

Material:
- Magnetrührer, heizbar
- Thermometer
- Esslöffel
- Hand-Rührgerät
- Topf, Edelstahl, klein
- Alu-Folie
- Küchen-Hobel
- Brot-Messer
- Rührgefäss
- Küchen-Brett

Himbeer-Trüffel:
- 20 g H-Sahne
- 200 g weiße Kuvertüre
- 60 g Himbeer-Püree
- 40 g Butter
- 1 EL Himbeergeist

Butter-Sahne-Trüffel:
- 30 g H-Sahne
- 200 g Vollmilch-Schokolade
- 20 g Butter
- 2 EL Alkohol

Mokka-Trüffel:
- 40 g H-Sahne
- 200 g Vollmilch-Schokolade
- 40 g Butter
- 2 TL Nescafé
- 2 EL Weinbrand

zum Dekorieren/Servieren:
- Kakao-Pulver
- Streusel etc.
- Oblaten oder Waffeln

Durchführung:
Schokolade raspeln bzw. mit dem Messer zerkleinern.
Sahne im Topf auf ca. 50°C erhitzen. von der Platte nehmen und zügig Schokolade einrühren, bis sie sich vollständig löst und eine glatte Masse ergibt. Auf ca. 35°C abkühlen lassen.
Butter mit 2 EL Schokolade schaumig rühren, dann in kleinen Portionen langsam in die abgeführte Trüffel-Masse einrühren.
Zum Schluss Alkohol zugeben und leicht verrühren.
Masse auf die Alu-Folie oder Oblaten gießen, mit dem Messer auf ca. 1,5 cm Dicke ausstreichen und im Kühlshrank ca. 30 Minuten härten lassen.
Danach in Würfel schneiden. Im Fall der Oblaten sind sie verzehrfertig, im Fall der Alu-Folie zwischen den Handflächen zügig Kugeln formen.
Diese in Kakao-Pulver, Streusel o. ä. wälzen (nicht Himbeer-Trüffel).

Entsorgung: Oral, vorzugsweise durch den Praktikumsleiter

Quelle: Pütz, J.; Niklas, Ch.: Süßigkeiten mit und ohne Zucker, Hobbythek, vgs Köln 1989

Didaktischer Hinweis:
Genau genommen betreiben wir mit diesem Rezept nicht Chemie, sondern Physik: Keine Stoffart-Umwandlung. Nachdem die Physik aber keine Pralinen macht, machen wir sie, aus affektiven Gründen ;-)
13.2 Eis-Konfekt

Zeitbedarf: 25 Minuten, Lernende, n
Kompetenz/Ziel:
B: Schmelz-Enthalpie und Mundgefühl:
Zusammenhang chemischer und geschmacklicher Eigenschaften

Material:
- Brot-Messer
- Gefrier-Beutel
- Hand-Rührgerät mit Besen
- Schere
- Alu-Folie
- Alu-Förmchen oder Eiswürfel-Formen
- Rühr-Gefäß

Chemikalien:
- 125 g Kokos-Fett
- 150 g Sorbit
- möglichst feinste Puderform
- 40 g Vollmilch-Pulver
- 35 g Kakao-Pulver
- Backaroma Vanille
- Backaroma Rum

Durchführung:
125 g Kokos-Fett werden etwas zerkleinert und in das Rühr-Gefäß gegeben.
150 g Sorbit, 35 g Kakao-Pulver und 40 g Vollmilch-Pulver dazugeben.
Mit dem Rührgerät auf mittlerer Stufe rühren, bis eine glatte Masse entstanden ist.
Dann mit wenigen Tropfen Rum- und Vanille-Aroma abschmecken.
Fertige Masse in den Gefrier-Beutel füllen, eine Ecke abschneiden und in die Alu-Förmchen drücken.

Beobachtung:
Schokolade mit „kühlem“ Geschmack

Entsorgung:
Oral

Quelle:
Pütz, J.; Niklas, Ch.: Süßigkeiten mit und ohne Zucker, Hobbythek, vgs Köln 1989

Diskussion:
Ist es „Chemie“, was bei der Fertigung passiert?
Woher kommt der kühlende Effekt?

Hintergrund:
Die Korn-Größe der Zutaten (besonders Sorbit und Kakao-Pulver) muss unter 20 Mikrometer liegen, da sonst die Zunge einzelne Körner wahrnimmt und ein sandiger Geschmackseindruck entsteht.
Sorbit aus dem Supermarkt liegt deutlich drüber.
Mit einer Kaffee-Mühle lässt sich die Korn-Größe reduzieren, allerdings nicht unter die gewünschte Grenze.

WWW:
http://de.wikipedia.org/wiki/Eiskonfekt, 29.03.2011

14.1 Nachweis des Ammonium-Kations

Zeitbedarf: 5 Minuten, Lernende, n
Kompetenz/Ziel: E: qualitative Analyse

Material:
- 2 Uhrgläser, d= 80 mm
- Pasteur-Pipette, Hüttchen

Chemikalien:
- Natriumhydroxid
 CAS-Nr.: 1310-73-2
 Gefahr: H290, H314
 P280, P301+P330+P331, P305+P351+P338, P308+P310
- pH-Indikatorpapier
- VE-Wasser
- Aminosäure, z. B. Glycin
 CAS-Nr.: 56-40-6

Durchführung:
Von der zu testenden Substanz wird eine Spatel-Spitze in ein Uhrglas gegeben und anschließend mit ca. 1 mL VE-Wasser benetzt.
Auf dem anderen Uhrglas wird pH-Papier mit VE-Wasser benetzt und auf diese Weise befestigt.
Anschließend eine Spatel-Spitze Natriumhydroxid auf das Wasser und die zu testende Substanz geben (dies wäre bei Lernenden < Jgst. 10 der Lehrende) und das Uhrglas mit dem Indikator-Papier umgedreht daraufsetzen.

Beobachtung:
Befindet sich in der zu testenden Substanz Ammonium, färbt sich das Indikator-Papier blau.

Deutung:
Das Hydroxid-Anion deprotoniert als stärkere Base das Ammonium-Kation in der zu testenden Substanz:
\[\text{NH}_4^+ + \text{OH}^- \rightarrow \text{NH}_3 + \text{H}_2\text{O} \]
Das dabei entstehende Ammoniak-Gas kann sich nicht vollständig in Wasser lösen und steigt auf.
Dabei reagiert es mit dem Wasser, das das Indikator-Papier benetzt:
\[\text{NH}_3 + \text{H}_2\text{O} \rightarrow \text{NH}_4^+ + \text{OH}^- \]
Die Hydroxid-Anionen färben das Indikator-Papier nach blau um.

Entsorgung:
Ausguss, E1, Indikator-Papier in den Hausmüll, E3

Quelle:
Allgemeingut

Didaktischer Hinweis:
Nachweis der Amino-Gruppe in Aminosäuren: in PorzellanSchale erhitzen.
14.2 Aluminium-Salze in Deodorants

Zeitbedarf: 10 Minuten, Lehrende, n
Kompetenz/Ziel:
F: Aluminium-Nachweis
E: Aluminiumhydroxid als Beispiel für ein amphoteres Salz
B: Aluminium-Salze als Antitranspirant

Material:
- Magnetrührer, heizbar
- 2 Bechergläser, 25 mL
- Pulver-Spatel
- 3 Rollrand-Gläser, 40 mL, mit Schnappdeckel

Chemikalien:
- VE-Wasser
- Deodorant-Spray mit Aluminiumchlorid
- Natriumcarbonat
 CAS-Nr.: 497-19-8
 Achtung
 H319
 P260, P305+P351+P338
- Rohrreiniger mit Natriumhydroxid
 Gefahr

Durchführung:
Deodorant in ein Becherglas sprühen, bis der Boden vollständig bedeckt ist, dazu ca. 10 mL Wasser.
Den Inhalt auf drei Rollrand-Gläser gleichmäßig verteilen.
In zwei Gläser jeweils eine Spatel-Spitze Natriumcarbonat geben.
Den Inhalt des einen Rollrand-Glases in das andere Becherglas geben, dazu einen Spatel-Spitze Rohrreiniger und auf lauwarm erwärmen.

Beobachtung:
Zu Beginn ist die Deo-Lösung etwas trüb.
Nach Zugabe von Natriumcarbonat entsteht eine gallertartige Masse, die durch Drehen des geneigten Rollrand-Glases gut an dessen Wänden sichtbar gemacht werden kann.
Nach Zugabe des Rohrreinigers löst sich die Masse.

Deutung:
Durch die basische Wirkung von Natriumcarbonat füllt Aluminiumhydroxid aus, reagiert aber mit starken Basen (Natriumhydroxid des Rohrreinigers) und bildet Natriumaluminat.

\[
\text{Al(OH)}_3 + \text{NaOH} \rightarrow \text{Na}^+ + \text{H}_2\text{AlO}_3^- + \text{H}_2\text{O}
\]

Das ionische Produkt ist wieder vollständig löslich.

Entsorgung:
Ausguss, E1

Quelle:
Praxis der Naturwissenschaften – Chemie, 2004, Heft 8, S. 33
14.3 Maillard-Verbindungen

Zeitbedarf: 15 Minuten, Lernende, n
Kompetenz/Ziel:
F: Reaktionen von Aminosäuren und Kohlenhydraten
B: Bedeutung von Maillard-Verbindungen im Alltag

Material:
- 2 Reagenzgläser, d= 18 mm
- 2 Stopfen
- Spatel
- Becherglas, 150 mL

Chemikalien:
- VE-Wasser
- Prolin
 CAS-Nr.: 147-85-3
- Phenylalanin
 CAS-Nr.: 63-91-2
- Glucose (Traubenzucker)
 CAS-Nr.: 50-99-7

Durchführung 1:
Im Reagenzglas werden je eine Spatel-Spitze Prolin und Glucose vermischt und ca. ½ mL Wasser zugesetzt.
Dann erwärmt man im Wasserbad, nimmt das Reagenzglas nach ca. 3 Minuten heraus und erhitzt es über der Brenner-Flamme weiter, bis eine leichte Braun-Färbung eintritt.
Man prüft immer wieder den Geruch, bis er intensiv genug ist.

Beobachtung 1:
Der Geruch erinnert an Gebackenes („Popcorn“, „frisches Brot“)

Durchführung 2:
Wie Durchführung 1, aber mit Phenylalanin anstatt Prolin

Beobachtung 2:
Geruch erinnert an frisch geschnittene Blumen, Veilchen oder Flieder

Deutung:

Entsorgung: Reagenzgläser müssen entsorgt werden.

Quelle: verschiedene Quellen, angepasst

Diskussion:
Bedeutung der Maillard-Verbindungen und ihrer Folge-Produkte beim Kochen oder Braten zum Erreichen des typischen Braten- oder Brot-Aroma.
14.4 Absorptionsspektrum eines Indikators

a) Merck

Zeitbedarf: 20 Minuten, Lernende, n

Kompetenz/Ziel:
F: Farb-Spektrum von Bromthymolblau
E: Handhabung eines Spektral-Photometers

Material:
- Pasteur-Pipetten, Hüttchen
- Spektral-Photometer

Chemikalien:
- Bromthymolblau-Lösung
 w= 0,1%
 CAS-Nr.: 76-59-5
- Puffer-Lösung
 pH= 7
- VE-Wasser
- Salzsäure
 c= 0,1mol/L
 CAS-Nr.: 7647-01-0
- Natronlauge
 c= 0,1mol/L
 CAS-Nr.: 1310-73-2

Durchführung:
Das Photometer wird zunächst für 15 Minuten eingeschaltet.
Danach läuft die Lichtquelle konstant.

Benötigt werden 3 Messungen:
- im Sauren
- bei pH= 7
- im Basischen

Für jede Messung sind folgende Schritte nötig:
1) Messung Spektrum auswählen
2) In eine Küvette wird mindestens 4cm hoch das Medium (Salzsäure, Puffer oder Lauge) gefüllt
3) Am Beginn einer Messreihe verlangt das Photometer die Erstellung eines Leerwert-Spektrums.
 Leerwert-Probe aus 2) einsetzen, Blank Zero drücken. Das Photometer nimmt das Leerwert-Spektrum auf (dauert ca. 5 Minuten)
4) Küvette entnehmen, 5 Tropfen Bromthymolblau-Lösung zugeben und wiedereinsetzen.
 Zum Starten der Messung Start Enter drücken. Die Messung dauert ca. 5-7 Minuten.
5) Das Spektrum per Hand skizzieren und auf USB-Stick speichern

Beobachtung:
Zeichne im Labor-Buch

Deutung:
Das Spektrum der neutralen Lösung zeigt eine Kombination der Extinktionen der Lösungen von Bromthymolblau im Sauren und Basischen.
Die verschiedenen Formen des Bromthymolblau stehen in einem durch die Oxonium-Ionen-Konzentration bestimmten Gleichgewicht.

Entsorgung: Ausguss

Quelle: verschiedene Quellen, angepasst

Diskussion:
Änderung der Gleichgewichtslage durch verschiedene pH-Werte.
Aufbau und Arbeitsweise eines Universal-Indikators.
b) Vernier

Zeitbedarf: 20 Minuten, Lernende, n

Kompetenz/Ziel:
F: Farb-Spektrum von Bromthymolblau
E: Handhabung eines Spektral-Photometers

Material:
- Pasteur-Pipetten, Hüten
- Spektral-Photometer Vernier
- 4 Rund-Küvetten mit Deckel

Chemikalien:
- **Bromthymolblau-Lösung**
 \(w = 0,1\% \)
 CAS-Nr.: 76-59-5
- **Puffer-Lösung**
 pH = 7
- **VE-Wasser**
- **Salzsäure**
 \(c = 0,1\text{mol/L} \)
 CAS-Nr.: 7647-01-0
- **Natronlauge**
 \(c = 0,1\text{mol/L} \)
 CAS-Nr.: 1310-73-2

Vorbereitung:

Photometer mindestens 8 Stunden im Voraus aufladen (Orange LED: Ladevorgang, grüne LED: voll geladen).

Zur Installation der Software auf folgenden Link gehen:
je nach verwendetem Gerät die entsprechende Software auswählen:

Bei Smartphones, Tabletts, etc. über den Google Play Store oder den App Store downloaden. Ausführen wählen. Beim Installieren wird automatisch ein Icon zum Starten des Programms auf dem Desktop gezeigt:

Durchführung:

1. Verbinden via Bluetooth:
4. „Koppeln Sie ein Spektrometer“ anklicken.
5. „Spectro Vis Plus 0012314“ aus der Liste der angezeigten Geräte wählen.

Es gibt verschiedene Messvarianten:

1. Absorptionsgrad
 a) Über die Wellenlänge – Aufnahme eines vollständigen Spektrums
 b) Über die Konzentration – Beer’sches Gesetz
 c) Gegen die Zeit – für kinetische Experimente
2. % Transmittance
3. Fluoreszenz
4. Emission: Verschiedene Messungen mit dem Spektrometer-Fühler, z.B. Flammenfärbung
5. Advanced Full Spectrum

Messung des Absorptionsgrades – Wellenlänge

1. Absorptionsgrad über die Wellenlänge wählen.
3. Die Küvette für die Messung zu ¾ mit der Probe befüllen und in den Küvetten-Schacht stellen.
4. „Erfassen“ klicken.
5. „Stopp“ klicken, um die Messung abzuschließen.
7. Die Daten können exportiert werden.
8. Für einen neue Messung:

HINWEISE FÜR EINE GUTE MESSUNG:

Die Probe muss ausreichend verdünnt sein, unter 1mol/L, um ein aussagekräftiges Spektrum zu erhalten.

Aufnahme eines Emissionsspektrums mit dem Spektrometer-Fühler

Entsorgung: Ausguss

Quelle: Handbuch Vernier Spektrometer, angepasst von Ulrike Borken.
15. **Modell-Experimente und Modelle bauen / Termin: 21.07.2020**

15.1 **Modell: Einführung der Wertigkeit mit LEGO-Steinen**

Zeitbedarf: 10 Minuten, Lernende, n

Kompetenz/Ziel:

E: Ableitung der Wertigkeit und ihre Rolle bei der Zusammensetzung von Verbindungen

B: Aussagekraft von Modellen

K: Modelle

Material:
- LEGO-Steine, einreihig, der Längen
- 1 weiß: **Wasserstoff**
- 1 grün: **Halogene**
- 2 rot: **Sauerstoff**
- 2 gelb: **Schwefel**
- 3 blau: **Stickstoff**
- 4 schwarz: **Kohlenstoff**

Durchführung:

Regeln für die Anwendung:
- Ein Molekül besteht immer nur aus zwei Reihen Steinen
- Das Molekül ist fertig, wenn die beiden Reihen gleich lang sind

Aufgabe:

Folgende Moleküle können durch Gruppen gebaut werden:

- CH₄, NH₃, OH₂, CIH
- CO₂, CCl₄
- N₂, O₂, Cl₂, H₂
- H₂CO, H₃C-COOH, H₃C-CH₃, H₂C=CH₂, HCCH

Entsorgung:

Keine

Quelle:

Didaktik der Chemie, Universität Bayreuth

Didaktischer Hinweis:

Dieses Modell sollte wirklich nur für die Wertigkeit eingesetzt werden, nicht etwa für Molekül-Bau oder sogar Struktur-Betrachtungen, da man sonst sehr schnell an die Modell-Grenzen stößt:

1) Zwischen Atomen und Ionen kann nicht unterschieden werden
2) Formal würden Ionen-Verbindungen Moleküle ergeben. Daher werden keine Metalle zur Verfügung gestellt.
3) Nicht ganzzahlige Bindungsordnungen sind nicht darstellbar (z. B. NO, Benzol)
4) Das Molekül C₂ wäre möglich
5) Die Abfolge der Atome im Molekül kann nicht erkannt werden. Es kommen auch falsche Ergebnisse zustande (H₂CO₃ mit O-O-Bindung)

Deshalb eignet sich das Modell gut für die Diskussion von Modell-Grenzen mit Lernenden
15.2 Chemische Reaktion (LEGO) mündlich, Betreuer
15.3 Atome nach Kimball, nach Anweisung der Betreuer
15.4 Modell-Versuch zum chemischen Gleichgewicht B/D!

Zeitbedarf: 10 Minuten, Lernende, 1
Kompetenz/Ziel:
E: Modell für das chemische Gleichgewicht
K: Modelle

Material:
- 2 Mess-Zylinder, 50 mL
- 2 Hände von Lernenden/Studierenden
- Glas-Rohr, L= 250 mm, d= 7 mm
- Glas-Rohr, L= 250 mm, d= 4 mm
- Kaliumpermanganat (s)
 CAS-Nr.: 7722-64-7
H272, H302, H314, H410
P220, P273, P280, P305+P351+P338, P310, P501

Chemikalien:
- Leitungswasser
ggf. gefärbt mit:
- Methyleneblau
 CAS-Nr.: 61-73-4

Durchführung 1:
Zylinder A wird bis zur 50 mL-Markierung befüllt.

Beobachtung 1:
Der Flüssigkeitsstand in A nimmt ab, der in B zu.
Der Flüssigkeitsstand in Rohr A ist hoch, jedoch abnehmend, der in B niedrig, jedoch zunehmend.

Durchführung 2:
Den abwechselnden Transport etwa 20-mal wiederholen, dabei die Flüssigkeitsstände in den Zylindern sowie den Rohren beobachten.

Beobachtung 2:
1) Qualitativ: nach ca. 15-mal Wechseln bleibt der Flüssigkeitsstand in beiden Zylindern (und in den Glas-Rohren) konstant
2) Quantitativ: Tabelle der Flüssigkeitsstände in den Zylindern

Auswertung:
1) Berechnen oder bestimmen Sie die Flüssigkeitsvolumina in den beiden Glasrohren beim 21. Wechsel
\[V_A = X, x \text{ mL} \quad V_B = X, x \text{ mL} \]

2) Werte-Tabelle anlegen und Graphen zeichnen

Deutung:
1) Die Flüssigkeitsmenge entspricht den Stoff-Mengen, bei \(t = 0 \): Stoffmenge A maximal (Edukte), Stoffmeng B= 0 (Produkte)
2) Die Flüssigkeitsmenge (nicht nur die Füllhöhe) in den Glas-Rohren entspricht der Reaktionsgeschwindigkeit \(V_R \)

Entsorgung:
Auszuss

Quelle:
Schulbücher

Diskussion:
- Wie geht der Versuch aus, wenn man die Rohre vertauscht?
- Wie geht der Versuch aus, wenn man gleiche Rohre verwendet?
- Wie müssten die Rohre gewählt werden, um einen „quantitativen“ Umsatz darzustellen?
15.5 Das Chemische Gleichgewicht B/D!

a) geschlossen

Zeitbedarf: 10 Minuten, Lernende n,
Kompetenz/Ziel:
E: Beweis für Vorliegen eines chemischen Gleichgewichts. Prinzip für den kleinsten Zwang

Material:
- 4 Reagenzgläser, d= 18 mm
- 2 Stopfen

Chemikalien:
- VE-Wasser
- Ammoniumthiocyanat-Lösung
c= 0,6 mol/L
CAS-Nr.: 1762-95-4
EUH032
- Ammoniumthiocyanat-Lösung
c= 0,1 mol/L
CAS-Nr.: 1762-95-4
EUH032
- 2 Pasteur-Pipetten, Hütchen
- Eisen(III)-chlorid-Lösung
c= 0,1 mol/L
CAS-Nr.: 7705-08-0
Achtung
H317, H319
P280, P302+P352, P305+P351+P338

Vorbereitung:
Im Reagenzglas 1 werden je ca. 0,5 mL der Lösungen Eisen(III)-chlorid und Ammoniumthiocyanat (0,6 mol/L) gemischt und mit Wasser aufgefüllt. Den Inhalt auf alle 4 Reagenzgläser gleichmäßig verteilen. Reagenzglas 1 bleibt zum Farb-Vergleich in diesem Zustand. Reagenzgläser 2-4 werden mit Wasser aufgefüllt. Davon bleibt Reagenzglas 2 zum Farb-Vergleich erhalten. Mit den Reagenzgläsern 3-4 verfährt man wie in „Durchführung“ beschrieben.

Durchführung 1:
Zu Reagenzglas 3 gibt man ca. 1 mL Eisen(III)-chlorid-Lösung, schließt mit dem Stopfen, verrmischt den Inhalt und beobachtet.

Beobachtung 1:
Die anfänglich rotorange Färbung vertieft sich nach rot.

Durchführung 2:
Zu Reagenzglas 4 gibt man ca. 1 mL Ammoniumthiocyanat-Lösung (c= 0,1 mol/L), schließt mit dem Stopfen, verrmischt den Inhalt und beobachtet.

Beobachtung 2:
Die anfänglich rotorange Färbung vertieft sich nach rot.

Deutung:

Entsorgung: Ausguss

Quelle: Schulbücher

Diskussion: Führt eine Zugabe von Ammonium-Kationen auch zur Farb-Vertiefung?

Hintergrund:
Fe$^{3+}$+3Cl$^-$+6NH$_4^+$+6SCN$^-$ aus FeCl$_3$ aus NH$_4$SCN \leftrightarrow [Fe(SCN)$_6$]$^{3-}$ rotes Komplex-Anion \rightarrow 6 NH$_4^+$+3Cl$^-$
b) geöffnet, problemorientiert

Zeitbedarf: 10 Minuten,

Kompetenz/Ziel:

E: Beweis für das Vorliegen eines chemischen Gleichgewichts.
Prinzip vom kleinsten Zwang.

B, K: Deutung unterschiedlicher Versuchsergebnisse bei scheinbar gleichen Voraussetzungen.

Material:
- 4 Bechergläser, 400 mL, hoch

Chemikalien:
- VE-Wasser
- Kaliumpermanganat-Lösung
c = 0,001 mol/L
CAS-Nr.: 7722-64-7
- Ammoniumthiocyanat-Lösung
c = 0,1 mol/L
CAS-Nr.: 1762-95-4
EUH032

Durchführung 1:
In zwei Bechergläser gibt man je ca. 50 mL der Permanganat-Lösung und stellt sie auf den OHP. Das durchtretende Licht erscheint gleich hell (violett).
Nun wird zum einen Becherglas zweimal je 50 mL Wasser hinzugegeben und die Farb-Intensität beobachtet.

Beobachtung 1:
Die Lichtflecken bleiben trotz Verdünnung gleich hell. Begründen Sie.

Deutung 1:
Die Konzentrationsabnahme der Lösung wird durch Zunahme der Schichtdicke, durch die das Licht fällt, ausgeglichen.

Durchführung 2:
In das dritte Becherglas gibt man ca. 1 mL Eisen(III)-chlorid-Lösung, füllt mit Wasser auf ca. 100 mL auf und stellt es auf den OHP. Dazu gibt man 1 mL Thiocyanat-Lösung und beobachtet. Die gelbbraune Färbung vertieft sich nach rot. Siehe Hintergrund.

Durchführung 3:
Man gibt die Hälfte der roten Lösung aus Becherglas 3 in das vierte Becherglas und stellt die beiden Bechergläser auf den OHP. Geben Sie zu einer der Lösungen zweimal je 50 mL Wasser und beobachten Sie die Farb-Intensität.

Beobachtung 3:
Beide vom OHP projizierten Lichtflecke erscheinen zunächst gleich hell, bei Verdünnung wird aber der eine immer heller.

Problem: Erklären Sie das unterschiedliche Verhalten der Permanganat- und der Eisenthiocyanato-Komplex-Lösung beim Verdünnen.

Deutung: Notiere im Labor-Buch

Entsorgung: Ausguss

Quelle: Schulbücher

Hintergrund:
\[
\text{Fe}^{3+} + 3\text{Cl}^- + 6\text{NH}_4^+ + 6\text{SCN}^- \leftrightarrow [\text{Fe(SCN)}_6]^{3-} + 6\text{NH}_4^+ + 3\text{Cl}^- \\
\text{aus FeCl}_3 \quad \text{aus NH}_4\text{SCN} \quad \text{rotes Komplex-Anion}
\]

- Overhead-Projektor
- Eisen(III)-chlorid-Lösung
c = 0,1 mol/L
CAS-Nr.: 7705-08-0

\[\text{H317, H319, P280, P302+P352, P305+P351+P338}\]
15.6 Modell-Versuch zum Energie-Profil B/D!

Zeitbedarf: 5 + 5 Minuten, Lernende, 1
Kompetenz/Ziel:
E: Modell für den Verlauf für die Aktivierungs- und Reaktionsenergie

Material:
- 2 Erlenmeyerkolben, 200 mL, eng
- passende Glas-Verbindungen

Chemikalien:
- Leitungswasser
ggf. gefärbt mit
- 2 Stopfen, dazu mit 2 Bohrungen
- Laborboy
- Methylenblau
 CAS-Nr.: 61-73-4

Achtung
H302
P301+P312+P330

Vorbereitung:
Erlenmeyerkolben A wird fast ganz mit Flüssigkeit gefüllt. Das verbindende Glas-Rohr soll in A wie in B den Boden fast berühren.
Erlenmeyerkolben A wird entweder über- (exotherme Reaktion) oder unterhalb (endotherme Reaktion) platziert.
Hierzu genügt auch ein Drehen der Versuchsanordnung um die Hochachse.

Durchführung 1: exotherme Reaktion

Die „Reaktion“ wird gestartet, indem man in das offene Rohr von Gefäß A bläst.
Die Flüssigkeit steigt im verbindenden Rohr hoch. Sobald sie den absteigenden Ast des Rohres erreicht hat (wie weit genau?), muss nicht mehr geblasen werden.

Beobachtung 1:
Die Flüssigkeit läuft von sich aus so lange in Gefäß B, bis das Rohr-Ende in A nicht mehr eintaucht.

Deutung 1:
Zum Starten der Reaktion wird Aktivierungsenergie (Blasen) benötigt.
Reicht diese aus um die Reaktion über den „Aktivierungsberg“ zu heben, läuft sie „freiwillig“ weiter.
So eine Reaktion bezeichnet man als exotherm oder exergonisch (je nach Betrachtungsniveau).
Durchführung 2: endotherme Reaktion

Analog zu Durchführung 1 wird die Reaktion gestartet, indem in das offene Rohr von Gefäß A geblasen wird.

Beobachtung 2:
Diesmal gibt es keinen Punkt im verbindenden Rohr, ab dem die Reaktion von selbst weiterläuft. Das Blasen muss bis zum vollständigen Übergang der Flüssigkeit aufrechterhalten werden. Unterbricht man es, fließt die Flüssigkeit von selbst wieder in Gefäß A zurück.

Deutung 2:
Die Aktivierungsenergie (Blasen) ist höher als die Reaktionsenthalpie. Sei eine Reaktion bezeichnet man als endotherm oder endergonisch (je nach Betrachtungsniveau).

Entsorgung:
Auszug

Quelle:
Schulbücher

Diskussion:
Unterschied exotherm/exergonisch und endotherm/endergonisch?
15.7 Das Gummibären-System

Zeitbedarf: 15 Minuten, Lernende, n
Kompetenz/Ziel:
E, K: Ordnungskriterien erarbeiten
B: Modell-System für das PSE
Material:
3 Päckchen Haribo-Konfekt, -Colorado oder Haribo-Stafetten mit 8 verschiedenen Formen in 4-5 unterschiedlichen Farben, z. B.:
- Gummibären
- Weingummi
- Frösche
- Stafetten
- Lakritz/Kokos viereckig
- Lakritz/Kokos mehrlagig
- Schaumteile
- Lakritz/Kokos rund
- ein „aus der Rolle fallendes“ Teil (Himbeere)

Vorbereitung:
Die Teile werden in einer Tüte zusammen gemischt und auf einem Foto-Karton ausgeschüttet.

Aufgabe:
Es soll eine möglichst weitgehende Ordnung der Teile geschaffen werden.
Dazu sind die Teile zusammenzufassen, die in eine Kategorie gehören und die Kategorien ihrerseits sinnvoll anzuordnen.

Beobachtung:
Als Ordnungskriterien kommen Farbe und Form/Art/Größe der Süßigkeit in Frage.
Die zwei Kriterien können in einer zweidimensionalen Anordnung miteinander verknüpft werden.
Dann ergeben sich z. B. 8 Reihen (waagrecht angeordnet) mit je 4-5 verschiedenen Farb-Gruppen (senkrecht angeordnet) – vgl. Perioden und Gruppen des PSE, wo die Elemente nachsteigender atomarer Masse und chemischer Ähnlichkeit geordnet werden.
Dass aus der Rolle fallende Teil könnte z. B. die Rosse des Wasserstoffs übernehmen.
Allerdings ist im Gegensatz zum PSE seine Stellung nicht klar.

Entsorgung: Oral-Biologisch
Quelle: Schlicht, h.; Chemkon 2010, Nr. 4, 189-191

Didaktischer Hinweis:
Dieses Modell eignet sich gut für die Hinarbeit auf die Ordnung im PSE.
Die Form der sp0igkeit steht für die ähnlichen Eigenschaften der Elemente in einer Hauptgruppe, die Farbe für die Zugehörigkeit zu einer bestimmten Periode.
Im Vergleich dazu können die Ordnungskriterien im PSE diskutiert werden:
Hier sind nicht nur ähnliche bzw. abgestufte Eigenschaften wichtig, sondern das eindeutige Ansteigen der Massen- bzw. Ordnungszahl der Atome. Daher bleibt nur ein einziges sinnvolles Ordnungssystem übrig und auch nicht passende Teile (Wasserstoff) lassen sich sinnvoll einordnen.
15.8 Große Teilchen, kleine Teilchen, überhaupt Teilchen?

Zeitbedarf: 10 Minuten, Lernende, n
Kompetenz/Ziel:
F: Osmose: Diffusion durch eine Membran
E, B: Ermittlung der Teilchen-Größe durch Diffusion

Material:
- 3 Reagenzgläser, d= 30 mm mit Bördel-Rand
- 3 Bechergläser 250 mL, hohe Form
- Spatel

Chemikalien:
- VE-Wasser
- Stärke-Lösung
 \(w = 1\% \)
- Kaliumpermanganat (s)
 CAS-Nr.: 7722-64-7
 Gefahr
 H272, H302, H314, H410
 P220, P273, P280, P305+P351+P338, P310, P501

- je 3: Stativ, Muffe, Klammer
- Cellophan-Folie (Einmach-Folie)
- 3 enge Gummi-Ringe
- Lugolsche Lösung
 (Iod-Kaliumiodid-Lösung)
 Achtung
 H373
 P260, P314
- Brillantgrün (s)
 CAS-Nr.: 633-03-4, C.I. 42010
 Achtung
 H302, H319
 P305+P351+P338

Durchführung:
Zwei Reagenzgläser werden je ca. zur Hälfte mit Wasser gefüllt und darin so viel Spatel-Spitzen Kaliumpermanganat bzw. Brillantgrün gelöst, bis man durch die Lösung nicht mehr hindurchschauen kann.
In das dritte Reagenzglas wird ca. zur Hälfte Stärke-Lösung eingefüllt und mit 5 Tropfen Lugolsche Lösung angefärbt.
Die Reagenzgläser werden an der Mündung angefeuchtet, mit je einem 5x5 cm großen Stück Cellophan-Folie bedeckt und diese mit dem Gummi-Ring so befestigt, dass die Folie die Reagenzgläser völlig verschließt.
Durch Umdrehen die Dichtigkeit prüfen.
Die Reagenzgläser werden umgekehrt in je ein Becherglas mit Leitungswasser an einem Stativ befestigt eingehängt.

Beobachtung:
Aus dem Reagenzglas mit Iod-Stärke tritt kein Farbstoff in das Becherglas über.

Aufgabe:
In der Geschichte der Chemie war eine der bedeutendsten Fragen, ob Materie kontinuierlich oder diskontinuierlich (aus Teichen) aufgebaut sei.
Überlegen Sie, inwieweit dieses Experiment darauf eine Antwort liefert.
Deutung:
Die Cellophan-Membran ist semipermeable.
Die Permanganat-Ionen haben den kleinsten Radius und diffundieren daher recht schnell durch die Poren der Cellophan-Membran, schneller als die größeren Brillantgrün-Moleküle. Die Iod-Stärke-Komplex-Moleküle sind so groß, dass sie nicht durch die Membran diffundieren können.

Entsorgung:
Ausguss (nur sehr geringe Mengen an Chemikalien)

Diskussion:
Verwendung von Cellophan als „Molekül-Sieb“, z. B. durch Pasteur, der damit Enzyme und Coenzyme trennen konnte.
15.9 Das Sieden B/D!

Zeitbedarf: 15 Minuten, Lehrende, 1

Kompetenz/Ziel:
E, B: Selbständiges, genaues Beobachten; isolieren des Unbekannten vom Bekannten. Unterscheidung der Beobachtung von der Deutung. Alltagsphänomene erklären
K: Beratung in der Gruppe

Material:
- Erlenmeyerkolben, 250 mL, eng
- Thermometer T < 110°C
- Magnetrührer, heizbar
- Löffel-Spatel
- Säge-Späne

Chemikalien:
- Leitungswasser

Vorbereitung:
150 mL frisches, kaltes Leitungswasser werden einige Stunden vor Versuchsbeginn in das Gefäß gefüllt.
Das Gefäß muss danach ruhig bei Raumtemperatur stehen.

Beobachtung 1:
An der Gefäß-Wand sammeln sich Gas-Bläschen.

Problem 1:
Überlegen: Welches Gas könnte sich in den Bläschen befinden?

Deutung 1: (Gymnasium)
Lernende haben z. B. folgende Möglichkeiten, zielgerichtet zu antworten:
1) Wasserdampf – muss falsch sein, da sich jeder überzeugen kann, dass die Siedetemperatur noch nicht erreicht ist.
2) „Kohlensäure“ (für CO₂) – denkbar und hier nicht falsifizierbar.
3) Wasserstoff/Sauerstoff (aus H₂O) – ist falsch (müssen Lernende glauben) da durch so geringfügiges Erhitzen Wasser-teilchen nicht zerlegt werden können (sonst müsste Knallgas entstehen. Test?)
4) Sauerstoff (aus der Luft, vorher gelöst) – richtig, aber nicht vollständig.
5) Luft – fast richtig

In den Gas-Bläschen befindet sich ein luftähnliches Gas-Gemisch.

Hintergrund:
Das Gas war ursprünglich im Wasser gelöst.
Da sich die Löslichkeit und das Ausmaß ihrer Temperatur-Abhängigkeit z. B. von N₂, O₂ und CO₂ stark unterscheiden, wird man in den Bläschen nicht exakt die Mischung finden, wie sie in der Luft vorliegt.

Durchführung 2:
Ca. ein halber Löffel-Spatel Säge-Späne wird zugegeben und das Thermometer eingetaucht.
Dann das Gefäß auf den Magnetrührer stellen und die Säge-Späne zur Ruhe kommen lassen.
Jetzt erst die Heiz-Quelle einschalten.

Beobachtung 2:
Ein Teil der Säge-Späne setzt sich langsam am Boden ab, ein anderer schwimmt an der Oberfläche.
Das Thermometer zeigt Raumtemperatur minus 1-2°C.
Bei Zufuhr von Wärme fangen die Säge-Späne an, sich auf und ab zu bewegen.
Problem 2:
Was könnte die Ursache für die Bewegung der Säge-Späne sein?

Deutung 2:
1) Das Wasser muss sich bewegen und nimmt die Späne mit.
2) Konvektionsströmung: warmes Wasser steigt auf Grund seiner geringeren Dichte auf, kälteres sinkt nach unten. Die Säge-Späne machen dieses Phänomen, das sich ansonsten in Schlieren äußert, besser sichtbar.

Problem 2a:
Wie lange wird die Bewegung der Säge-Späne anhalten?

Deutung 2a:
Bis zur vollständigen Erwärmung auf 100°C und guter Durchmischung.

Beobachtung 3:
Von der Versuchsanordnung geht nach ca. 5-6 Minuten ein „Singen“ aus, kurz bevor es kocht. Das Thermometer steigt und zeigt etwa 50°C an.

Deutung 3:
Am Gefäß-Boden entstehen Wasserdampf-Bläschen, die aber sofort wieder kollabieren, da das darüber liegende Wasser noch nicht 100°C erreicht hat. Das Kollabieren verursacht die Geräusche, die je nach Gefäß in der Tonhöhe variieren („Tee-kessel-Singen“). Beobachtung kann uns hier nicht zur Deutung führen, da mit dem bloßen Auge nicht viel zu sehen ist.

Beobachtung 4:
Am Boden entstehen Gas-Blasen.

Problem 4:
Wie weit steigen die Gas-Blasen?

Deutung 4:
Die Gas-Blasen steigen nicht bis zur Oberfläche, sondern werden nach und nach kleiner und verschwinden.

Beobachtung 5:
Das Wasser beginnt zu Brodeln, große Blasen steigen bis zur Oberfläche. Das „Singen“ verschwindet. Das Thermometer zeigt etwa 100°C.

Deutung 5:
Die Wasserdampf-Blasenkönnen deshalb ganz hochsteigen, weil das umgebende Wasser 100°C erreicht hat.

Beobachtung 6:
Aus dem Gefäß entweicht weißlicher „Dampf“.

Problem 6:
Kann es sich bei dieser „weißlichen Erscheinung“ um Wasserdampf handeln?
Halte deine Hand etwa 15cm über das Gefäß in den „Dampf“.
Ab etwa 60°C würde man sich die Haut schmerzhaft verbrennen.
Wie heiß schätzt du den „Dampf“?
Wie heiß sollte Wasserdampf eigentlich sein?
Deutung 6:
Wasserdampf ist über 100°C heiß und nicht sichtbar.
Was wir sehen sollten wir als Dunst oder Nebel bezeichnen:
es handelt sich um in der kalten Luft bereits kondensierte kleine Wasser-Tröpfchen.

Ergänzung 6:
Beweis: ziehe das Thermometer langsam aus dem Wasser heraus.
Versuche festzustellen, in welcher Zone Dampf und in welcher Dunst vorkommt.

Entsorgung:

Quelle:
Niessen, J.; Präparationen für den Unterricht in der Naturlehre an Volksschulen, Goslar 1909

Didaktischer Hinweis:
Schon 1909 wurde ein klarer Aufbau für eine Unterrichtsstunde nach der forschend-entwickelnden Methode (allerdings noch stark katechisierend) empfohlen, wie er bis heute nicht konsequent umgesetzt wird.

Muster:
1) Vorbereitung
2) Beobachtungen (aus dem Alltag)
3) Ziel (dieser Unterrichtseinheit)
4) Darbietung
5) Verknüpfung
6) Zusammenfassung
7) Anwendung

Es kann sich die Erklärung der Vorgänge auf Teilchen-Ebene anschließen.

Beispiel typischer Anwendungsfragen (heute „Transfer“):
1) Warum gibt es Schnellkoch-Töpfe?
2) Warum verwendet man Milch-Töpfe?
3) Warum lässt sich Feuer durch Wasser löschen?
4) Warum glauben wir, dass eine Kerze durch das Brennen verschwindet?
5) Warum werden heiße Speisen durch Blasen kälter?

Diese Fragen sind z. T. erst nach weiteren Experimenten (etwa Destillation) ab der Mittelstufe erklärbar.

WWW:
Der historische Vorlagenentext
16. Anhang zum Nachschlagen

Dieser Teil ist stets zum Praktikum mitzubringen.

Er ist Teil der Sicherheitsmaßnahmen im Labor.
Entsorgung

Kurzform; ausführliche Bestimmungen in Häusler „Experimente für den Chemieunterricht“, S. 30-34

1) Das Prüfen, ob ein gefährlicher Stoff nicht durch weniger risikoreiche Substanzen ersetzt werden kann, gehört zu den Pflichten des Lehrenden.

2) Auf allen Sammel-Behältern ist die Beseitigungsgruppe im Wortlaut anzugeben und Warnhinweis-Schilder anzubringen.

4) Die Sammel-Behälter müssen unzerbrechlich, verschließbar und aus Inert-Material beschaffen sein (Kunststoff).

5) Beteiligung Lernender an Sondermüll-Beseitigung ist unzulässig

Problemabfälle

B1 anorganische Abfälle flüssig/gelöst
Schwermetallsalze
Kein Quecksilber

B2 feste Abfälle getrennt verpackt
anorganisch und organisch

B4, 5 Quecksilber
Giftschrank!

B6, 8 - 11 Spezifische Behandlung
Chromate, Cyanide,
Fluoride, Nitride,
Alkalimetalle, Carbide

B12 Fixierbäder
Rückgabe Handel

B3 organische Abfälle
Lösemittel, Aromaten,
CKW
16.2 Entsorgungsratschläge (E-Sätze)

E 1 Verdünnen, in den Ausguss geben (WGK 0 bzw. 1)
- kleinste Portionen reizender, gesundheitsschädlicher, brandfördernder Stoffe soweit wasserlöslich

E 2 Neutralisieren, in den Ausguss geben
- Saure und basische Stoffe

E 3 In den Hausmüll geben, gegebenenfalls in PE-Beutel
- Feststoffe, soweit nicht andere Ratschläge gegeben sind

E 4 Als Sulfid fallen
- Schwermetallsalze, B2 bzw. B7

E 5 Mit Calcium-Ionen fallen dann E1 oder E3
- lösliche Fluoride, Oxalate

E 6 Nicht in den Hausmüll geben
- brandfördernde Stoffe; explosionsfähige Stoffe (B3, 5, 6, 8-11)

E 7 Im Abzug entsorgen, wenn möglich verbrennen
- Absorbier- oder brennbare gasförmige Stoffe

E 8 Der Sondermüll-Beseitigung zuführen (Adresse zu erfragen bei der Kreis- und Stadtverwaltung). Abfall-Schlüssel beachten.
- Labor-Abfälle im Sinne der TA Abfall (Alle AUßER B12)

E 9 Unter größter Vorsicht in kleinsten Portionen reagieren lassen (z. B. offen im Freien verbrennen)
- Explosionsgefährliche Stoffe und Gemische (B3, 5, 6, 8-11)

E 10 In gekennzeichneten Glas-Behältern sammeln „organische Abfälle, halogenhaltig“ / „organischen Abfälle, halogenfrei“ dann E8
- Organische Verbindungen halogenhaltig / halogenfrei (B4 (flüssig) bzw. B1 (fest))

E 11 Als Hydroxid fallen (pH 8), den Niederschlag zu E8
- Gelöste Schwermetall-Salze (B2 bzw. B7 (Quecksilber))

E 12 Nicht in die Kanalisation gelangen lassen
- brennbare nicht wasserlösliche Stoffe, sehr giftige Stoffe

E 13 Aus der Lösung mit unedlerem Metall (z. B. Eisen) als Metall abscheiden (E14, E3)
- z. B. Verbindungen von Chrom oder Kupfer (B3, 5, 6, 8-11)

E 14 Recycling geeignet (Re-Destillation oder einem Recycling-Unternehmen zuführen)
- z. B. Verbindungen von Aceton, Quecksilber, Blei (B3, 5, 6, 8-11, B7 (Quecksilber), B2

E 15 Mit Wasser vorsichtig umsetzen, evtl. freiwerdende Gase verbrennen oder absorbiere- ren oder stark verdünnt ableiten
- Carbide, Phosphide, Hydride (B3, 5, 6, 8-11)

E 16 Entsprechend den Ratschlagen beseitigen
- B3, 5, 6, 8-11
16.3 Vorschriften rund ums Feuerwerk

Einteilung in Klassen:
Feuerwerkskörper für Vergnügungszwecke sind in Deutschland je nach ihrer Gefährlichkeit und Größe in vier Klassen unterteilt.

Klasse I oder auch **Kleinstfeuerwerk** darf von jeder Person die älter als 12 Jahre ist erworben und das ganze Jahr über verwendet werden. Die maximale Satzmenge beträgt lediglich 3g – gefährliche Sätze sind verboten.

Daran schließt sich die **Klasse II** an, deren Satzgewichtsgrenzen bis zu 50g pro Feuerwerkskörper bereits wesentlich höher liegen. Das Bestreben um eine Harmonisierung mit dem europäischen Sprengstoffgesetz macht es sogar möglich, dass seit 1998 Satzgewichte von mehr als 50g möglich sind. Die Erweiterung der Satzgewichtsgrenzen ist aber auch nur dann zulässig, wenn es sich dabei um ein so genanntes Batteriefeuerwerk handelt. Beim Batteriefeuerwerk, welches bis maximal 200g pyrotechnische Sätze enthalten kann und darf, handelt es sich um Anordnungen mehrerer einzelner Feuerwerkskörper, die untereinander mit einer Zündschnur verbunden sind. Dadurch ist es möglich, durch einmaliges Zünden relativ große Effekte zu erzielen. Da die Gegenstände dieser Klasse bereits wesentlich gefährlicher sind, ist der Verkauf auf die letzten drei verkaufsoffenen Tage, der Abbrand sogar nur am letzten Tag eines Jahres und am ersten eines neuen Jahres erlaubt.

Danach folgt das Mittelfeuerwerk, früher auch als Garten-Feuerwerk bekannt, als **Klasse III**. Da diese Klasse sehr gefährliche Sätze, zum Teil auch in relativ großen Mengen (bis 250g) enthalten kann, ist für den Erwerb solcher Feuerwerkskörper eine spezielle Ausbildung nötig.

Zulassung von Feuerwerksartikeln.
In Deutschland gibt es derzeit mehr als 1800 Feuerwerkskörper und Jahr für Jahr kommen unzählige hinzu. Bevor aber ein Feuerwerkskörper in Deutschland verkauft werden darf, muss er zunächst von der Bundesanstalt für Materialprüfung (BAM) auf seine Eignung geprüft werden. Ein typischer Test eines Klasse II Feuerwerks sieht z. B. so aus:

Die BAM erhält 30 Probestücke des Feuerwerkskörpers. Zehn davon werden sofort einem „Funktionstest“ unterzogen die anderen zwanzig werden bei 50°C vier Wochen lang gelagert bzw. zwei Stunden lang durchgeschüttelt und anschließend getestet. Beim Funktionstest darf keiner der Feuerwerkskörper 115dB in 8m Entfernung überschreiten, keine Rakete darf höher als 100m steigen, die Verzögerung nach dem Zünden muss zwischen 3-6 Sekunden liegen.

Besteht der Feuerwerkskörper alle Prüfungen, so erhält er ein Zulassungszeichen, welches sich aus den Buchstaben BAM, der Klasse (PI, PII, PIII, Klasse IV benötigt keine Zulassung) und einer Registrierungsnummer zusammensetzt. Ein Zulassungszeichen könnte z. B. folgendermaßen lauten: **BAM P II 0802**.

BAM steht dabei für die Bundesanstalt für Materialprüfung
P II für die Klasse, in diesem Fall Klasse II 0802 für die Registrierungsnummer, in diesem Fall handelt es sich um den Feuertopf der Kunst-Feuerwerk-Fabrik Fritz Sauer.

Quelle: http://www.pyroweb.de/WissenDeutschland.php
16.4 Gerätschaften am Arbeitsplatz

- 2 x Becher, Griffin, 250mL, PP, transparent, Ausguss, Skala blau
- 1x Becherglas, 100mL, hohe Form
- 1x Becherglas, 100mL, weite Form
- 1x Becherglas, 150mL, hohe Form
- 1x Becherglas, 250mL, weite Form
- 1x Becherglas, 250mL, hohe Form
- 2x Becherglas, 25mL
- 1x Becherglas, 400mL, weite Form
- 1x Becherglas, 50mL, weite Form
- 1x Becherglas, 5mL
- 1x Becherglas, 600mL, weite Form
- 1x Becherglas, 50mL, hohe Form
- 1x Brenner, Teclu
- 2x Elektrode, Grafit
- 1x Elektrode, Kupfer
- 1x Elektrode, Zink
- 1x Elektroden-Abstandshalte-Platte
- 2x Erlenmeyerkolben, 100mL, enghals
- 1x Erlenmeyerkolben, 250mL, weithals
- 1x Erlenmeyerkolben, 25mL, enghals
- 1x Erlenmeyerkolben, 500mL, eng hal s
- 1x Erlenmeyerkolben, 100mL, weithals
- 1x Feuerzeug, Gas-Anzünder mit Feuerstein
- 1x Feuerzeug, Stab mit Piezo-Zünder
- 1x Gas-Waschflaschen Aufsatz mit Filter-Platte
- 1x Gas-Waschrfläche, 100mL, mit Aufsatz ohne Filter-Platte
- 2x Glas, Abdeckscheibe, d= 60mm
- 1x Glas, Einleitungs bogen, L= 170mm
- 1x Glas, Knierohr, L= 200mm
- 1x Glas, Knierohr, L= 70mm
- 1x Glas, Knierohr, L= 70mm mit Kupfer-Draht
- 1x Glas, Quarz-Rohr, Verbrennungsrohr, L= 100mm
- 1x Glas-Rohr, L= 500mm, d= 25mm
- 1x Glas-Rohr, L= 50mm
- 1x Glas-Stab, L= 250mm
- 1x Glas, T-Stück
- 1x Glas, Überleitungsrohr, L= 100mm
- 1x Glasrohr-Schneider
- 1x Glasschneide-Feile
- 1x Hahn, Absperr-Hahn mit Teflon-Küken
- 1x Hahn, Dreiwege-Hahn mit Teflon-Küken
- 1x Indikator-Papier
- 1x Experimentier-Kabel, L= 100cm, blau
- 1x Experimentier-Kabel, L= 100cm, rot
- 1x Experimentier-Kabel, L= 50mm, blau
- 1x Experimentier-Kabel, L= 50mm, rot
- 1x Kerze, Christbaum-Kerze
- 1x Kerze, Teelicht
- 1x Standkolben, 100mL
- 1x Kristallisierschale mit Ausguss, d= 190mm
- 1x Krokokil-Klemme, rot
- 1x Krokokil-Klemme, schwarz
- 1x Lampen-Fassung E10
- 1x Lampe, 6V; 2,4W
- 1x Magnetrührer, heizbar
- 1x Magnetrührer, regelbar
- 1x Magnetrühr-Stäbchen, zylindrisch, L= 25mm
- 1x Magnetrühr-Stäbchen, dreieckig, L= 40mm
- 1x Rührstäbchen-Entferner
- 1x Messer, klein
- 1x Mess-Zylinder, 100mL
- 1x Mess-Zylinder, 50mL
- 1x Mess-Zylinder, 10mL
- 1x Petrischale, d= 80mm
- 1x Pinzette, stumpf, L= 130mm
- 1x Peleusball
- 1x Pipetten-Hütchen
- 1x Pipettierhilfe, pi-pump, grün
- 1x Pipettierhilfe, pi-pump, blau
- 1x Proben-Röhren, d= 8mm
- 4x Reagenzglas, d= 18mm, mit Bördel-Rand
- 4x Reagenzglas, d= 18mm, ohne Rand
- 4x Reagenzglas, d= 30mm
- 2x Reagenzglas, d= 7mm, für Spritzen-Versuch
- 1x Reagenzglas-Gestell, d= 18mm
- 1x Reagenzglas-Gestell, d= 30mm
- 1x Reagenzglas-Klammer, d= 30mm
- 1x Reagenzglas-Klammer, d= 18mm
- 1x Reibschale, d= 70mm mit Pistill
- 1x Rollrandglas, 10mL mit Schnapp-Dec kel
- 2x Rollrandglas, 40mL, mit Schnapp-Dec k el

227
- 1x Rollrandglas, 5mL, mit Schnapp-Deckel
- 1x Sandpapier, 50x30mm
- 1x Abdampfschale, d= 80mm
- 1x Schere
- 1x Schlauch-Schnellverbinder
- 1x Schlauch, Silicon, L= 500mL
- 1x Spatel, Doppelspatel, L= 150mm
- 1x Spatel, Löffelspatel, L= 300mm
- 1x Spatel, Löffelspatel, L= 180mm
- 1x Spritze, 10mL, Luer-Anschluss
- 1x Spritze, 20mL, Luer-Anschluss
- 1x Spritze, 50mL, Luer-Anschluss
- 1x Spritze, 5mL, Luer-Anschluss
- 1x Stand-Zylinder, V= 100mL
- 1x Stand-Zylinder, V= 250mL
- 1x Stativ, Büretten-Klemme
- 2x Stativ, Universal-Klammer
- 2x Stativ, Muffe
- 1x Stift, Folienschreiber, schwarz, F, permanent
- 1x Stopfen, 26x32mm, mit Bohrung
- 5x Stopfen, 14x18mm
- 2x Stopfen, 26x32mm
- 2x Stopfen, 17x22mm, Silicon
- 1x Thermometer, -10°C bis 150°C
- 1x Tiegel, d= 60mm
- 1x Tiegelzange
- 1x Tondreieck
- 1x Trichter, Glas, d= 100mm, Stiehl gebogen
- 1x Trichter, Glas, d= 80mm
- 1x Trichter, PP, d= 60mm
- 1x Trichter, PP, Pulvertrichter, d= 70mm
- 1x Tropf-Trichter mit Druckausgleich, Teflon-Küken
- 2x Uhrglas, d= 60mm
- 1x U-Rohr mit Seiten-Tubus
- 1x U-Rohr mit Diaphragma
- 1x Verbrennungslöffel
- 1x Wasserbad, Aluminium
- **Für alle im H1 stehen**
 - 1x Dreibein
 - 1x Keramik-Drahtnetz
 - 1x Labor-Netzgerät
 - 1x Stativ
16.5 Herstellen von Lösungen

- **Stärke-Lösung, w= 1%**
 1g Stärke einwiegen und auf 100g Lösung mit VE-Wasser auffüllen. Wenn nötig kurz aufkochen.

- **Lugolsche Lösung** (Iod-Kaliumiodid-Lösung)
 2g Kaliumiodid in 10mL VE-Wasser lösen dann mit 1g Iod versetzen und mit VE-Wasser auf 100mL auffüllen.

- **Salzsäure**, c= 2mol/L CAS-Nr.: 7647-01-0
 10mL VE-Wasser im 100mL Messkolben vorlegen, dazu 20mL Salzsäure (w= 32%) zupipettieren, dann mit VE-Wasser auf 100mL auffüllen.

- **Kaliumhexacyanoferrat(II)-Lösung**, c= 0,1mol/L, CAS-Nr.: 13943-58-3
 4,22g Kaliumhexacyanoferrat(II)-trihydrat einwiegen auf 100mL Lösung mit VE-Wasser auffüllen.

- **Essigsäure**, w= 5% (~1mol/L), CAS-Nr.: 64-19-7
 10mL VE-Wasser vorlegen, dazu 5mL Essigsäure (w= 100%) zugeben und auf 100mL mit VE-Wasser auffüllen.

- **Eisen(III)-chlorid-Lösung**, c= 0,1mol/L, CAS-Nr.: 10025-77-1
 2,70g Eisen(III)-chlorid-hexahydrat einwiegen, auf 100mL Lösung mit VE-Wasser auffüllen. Zu der fertigen Lösung 2-3 Tropfen Salzsäure (w= 32%) zugeben, dann hält sich die Lösung länger.

- **Schiffs-Reagenz** (fuchsinschwefelige Säure)
 0,25g Fuchsin (CAS-Nr.: 632-99-5) werden in 1000mL heißem VE-Wasser gelöst. In die erkalte Lösung werden unter Rühren 10g Natriumdisulfid (CAS-Nr.: 7681-57-4) und 10mL Salzsäure (w= 32%) zugegeben. Die Lösung muss sich entfärben.

- **Wasserstoffperoxid-Lösung**, w= 10%
 33mL Wasserstoffperoxid (w= 30%) auf 100mL Lösung mit VE-Wasser auffüllen.

- **Schweifelsäure**, w~20% (angesäuertes Wasser für Hoffmann'schen Zersetzungsapparat)
 10mL VE-Wasser vorlegen, dazu 52mL Schweifelsäure (w= 96%) mit VE-Wasser auf 250mL Lösung auffüllen.

- **Natriumcarbonat-Lösung**, gesättigt, CAS-Nr.: 497-19-8
 21,70mL Natriumcarbonat auf 100mL Lösung mit VE-Wasser auffüllen.

- **Kalkwasser**
 Einen Löffel-Spatel voll Calciumhydroxid in 500mL VE-Wasser geben. Die Lösung minddestens über Nacht stehen lassen, dann filtrieren.

- **Lackmus-Lösung**, w= 2%
 2g Lackmus auf 100g Lösung mit VE-Wasser auffüllen.

- **Phenolphthalein-Lösung**, w= 0,1% (Ethanol/Wasser)
 0,1g Phenolphthalein in 50mL Ethanol lösen und mit VE-Wasser auf 100mL auffüllen.

- **Silbernitrat-Lösung**, c= 0,1mol/L
 1,70g Silbernitrat in 50mL VE-Wasser lösen und mit VE-Wasser auf 100mL Lösung auffüllen. **IN EINER BRAUNGLAS-FLASCHE KÜHL AUFBEWAHREN.**

- **Natriumchlorid-Lösung**, c= 1mol/L
 5,84g Natriumchlorid in 50mL VE-Wasser lösen und mit VE-Wasser auf 100mL Lösung auffüllen.

- **Kaliumnitrat-Lösung**, c= 1mol/L
 10,11g Kaliumnitrat in 50mL VE-Wasser lösen und mit VE-Wasser auf 100mL Lösung auffüllen.
- **Kupfersulfat-Lösung, c= 1mol/L**
 24,65g Kupfersulfat-pentahydrat in 50mL VE-Wasser lösen und mit VE-Wasser auf 100mL Lösung auffüllen.
- **Indikator-Lösungen**
 Am besten fertig kaufen. Die Reinsubstanzen kosten meist mehr als die fertigen Lösungen.
- **Natronlauge, \(w= 30\%\)**
 30g Natriumhydroxid in 75mL VE-Wasser lösen und mit VE-Wasser auf 100mL Lösung auffüllen. Vorsicht: wird sehr heiß!
- **Salzsäure, c= 0,1mol/L**
 10mL VE-Wasser vorlegen, 10mL Salzsäure (\(w=32\%)\) hinzugeben, und mit VE-Wasser auf 1000mL Lösung auffüllen.
- **Natronlauge, c= 0,1mol/L**
 4g Natriumhydroxid in 50mL VE-Wasser lösen und mit VE-Wasser auf 1000mL Lösung auffüllen.
- **Natriumcarbonat-Lösung, c= 1mol/L**
 10,60g Natriumcarbonat in 50mL VE-Wasser lösen und mit VE-Wasser auf 100mL Lösung auffüllen.
- **Zinksulfat-Lösung, c= 1mol/L**
 28,75g Zinksulfat-7-hydrat in 50mL VE-Wasser lösen und mit VE-Wasser auf 100mL Lösung auffüllen.
- **Magnesiumsulfat-Lösung, c= 1mol/L**
 24,65g Magnesiumsulfat-7-hydrat in 50mL VE-Wasser lösen und mit VE-Wasser auf 100mL Lösung auffüllen.
- **Zinkiodid-Lösung**
 1g feines Zink-Pulver in 50mL VE-Wasser geben, dann 1g Iod zugeben. Jetzt die Lösung auf 100mL auffüllen. Aufschütteln, bis sich die Lösung entfärbt hat.
- **Zinnchlorid-Lösung**
 Zu 200mL Salzsäure (\(w= 23\%)\) solange Zinn-Granalien zugeben bis diese sich nicht mehr lösen.
- **Fehling-Lösung I**
 7g Kupfersulfat-pentahydrat in VE-Wasser lösen und auf 100mL Lösung auffüllen.
- **Fehling-Lösung II**
 35g Natriumkaliumtartrat und 10g Natriumhydroxid in VE-Wasser lösen und auf 100mL Lösung auffüllen.
- **Natriumhydrogencarbonat-Lösung, gesättigt**
 5,6g Natriumhydrogencarbonat in VE-Wasser lösen und auf 100mL Lösung auffüllen.
- **Ammoniumeisen(II)-sulfat-Lösung, \(w= 1\%\)**
 1g Ammoniumeisen(II)-sulfat mit VE-Wasser auf 100g Lösung auffüllen.
- **Gallussäure-Lösung, \(w= 0,1\%\) (Isopropanol/Wasser)**
 0,06g Gallussäure in 42mL Isopropanol und gibt anschließend 18mL VE-Wasser zu.
- **Ammoniumthiocyanat-Lösung, c= 0,6mol/L**
 4,57g Ammoniumthiocyanat in VE-Wasser lösen und auf 100mL Lösung auffüllen.
- **Ammoniumthiocyanat-Lösung, c= 0,1mol/L**
 0,76g Ammoniumthiocyanat in VE-Wasser lösen und auf 100mL Lösung auffüllen.
- **Kaliumpermanganat-Lösung, c= 0,001mol/L**
 0,08g Kaliumpermanganat in VE-Wasser lösen und auf 500mL Lösung auffüllen.